31 Introduction (n, k) - category ... a version of higher cotegory when we consider o ≤ k €n 0, --, n - morphisms & > & - wor are all invertible. $\underbrace{ex}(0,0) - cat = Set$ (1,1) - cat - Cat (1,0) - cat = gpdemrich (+1,+1)ex 6 with products. ~> B6 . obj = * ·mor = ob& (2,1) - cat = "bicategory" Strict vs weak: I natural examples only have compositions (of n-mr) only defined up to can, associative only up to not isom. Them: (00,0) - cat = homotopy +ypes invertible 2-mor (00, 1) - cost = Category theory U homotopy theory category level" = ho. type enriched cot We focus on k=1:) This wakes things simpler (behaves like "Lategory") "Lomotopy level" 1 For many purposes invertible mor is what we care Lo ho. thry. objects x, y, --. DEven if we are eventually interested in higher k, mor f: x -> y, ... the theory of (00.6) - cat is nost efficiently developed in 2-mor 2 15 2 , - - -(w,1) - categorical language ex X & Top ~> TTENX: N-groupoid obj: a point x & X (no)-cat) mor: a path x-y 2-mor: a homotopy between paths x & y invertible of 3-mor: a honotopy between homotopies (n-mor: (ho. between (n-1)-mor.) /homotopy. Gpdz = 2-Type Slagan: homotopy theory = the art of identification

Tes Gpd = 1-Type Terminals Terminology as-groupoid = anima = (weak) hometopy types Top Tree Set = O-Type Some printitue court from a To Completes

Notion like sets

Give representatives but should be availed when you really

Man a particular and all equivalent. special so-cat but sounds like . generalized raflects the feeling of: group oid

ex "the space (00-gpd of Something" is connected & unique up to 500	
1-connected (unique up to iso, unique up to homotopy	9
2-connected (=)	
ice. highly connected which is unique up to ho	
(a choice of such diject is highly canonical	
Uniqueness in higher category theory = contractible space of chirces	
ex a choice of algebraic closure is unique up to 150 but this 150 is not unique.	
the ON-groupoid of choices = BGal (E/k) (profinites 1-type.	
Iticky part: 00-gpd = anima should thenselves form an os-category Ani	
1- Categorical approximation:	
Det H := ho(Top) = obj CW cplx	
1 1- category (mor homotopy class of conti maps.	
ho	
The os-category Ani = Gpds should fit into Top These Ani Townton H Too Set and remember	rs
) - all homotopical into e.g. for any XiY EAni, the homotopy type Map(KY) EH. but also \ f.g. X >>	
L of Top the type Mapma(xiy) (fig), and so on.	
can test if a cone diagram is a homotopy (co) limit diagram	
(· but no more (homotopic maps should be "Indisguindable"	
Top - H is the initial functor to a 1-cat inverting who eq. (forgets too much for this)	
expect: Top -> Ani - " - &- cat - " (remembers just enough)	
these functors should be product - preserving (justified later; homotopy product = product as well-defind (2,1)-cat of the diagram shape is a set) Top-Cat -> Cato -> T-Cat -> Cat -> Cato cotegories (up to categories)	
the diagram shape is a set)	
lop- (at) (at) (at) (at) (brys) (1)	
ead Top H Ani to H Self- Continued Ani to Continu	
Ani H (enrichall) Ani Aothernice 4 75 a. 11-behaved oitogery e.g. has abuset no (60)	tuit
Fact Top-Cat is strictly enriched. but it turns out that any os-category can be rectified a	
presented as a Top-Cat. So one might as well define on-cat as a Top-enriched cat	
expect: Top-Cat -> Catao is the initial functor to a ex-cat which muerts	
DK-equivalences (ess. surj & hon-wise w.h.e.)	

Ken
TH is one step better approx for Ani. Heuristically, Ani is the limit of the iteration of this
process. (the next step is H-Gpd -enrichment) but such bottom-up approach suffers circular
problem. (Notice the difficulty in H vs M-Gpd)
However, a lot of os-categorical definition (limits, adjoints,) only depends on
the underlying He-enriched category.
Models of so-gpds & so-cots
To cut the circular chain. we need a 1-categorical defu.
1- Categorical presentation - actual co-cat - 1- categorical approx
(model categories / relative cats) we're after
Top w.e. (Ch. havea)
They \ \ I = Gpd . Dkee) - Show - Sh
Top w.e. (CM, hv.e.g) The Gpoles Ani = Gpoles (Kon cpr. ho.eg) Top-Gpt. Dkee) (= S)
(Top-Cat, DK eq) ((Kom-Cat, DK eq) ((QCat, Joyal eq) ((RelCat, w.e.) our choice
(Kom-Cat, DK cq)
Goton H-Cat
(gCat, Joyal eg)
(0,0)
choose a convenient/flexible dof as the official def.
this work has been done once you can fluently talk about Caton itself, you can forget
50 you can pretend you are here? the choice we made.
tally model Levely thry of Cato using (Levely thry of Cato using)
slet, etc.

\$2 An implementation by simplicial sets Def · A < Cat finite nonempty ordinals. "Simplex category" 1[n] = {0<... < n7 / n > 0} • A simplicial set is $X : \triangle^{ep} \longrightarrow Set$. Let $sSet := Fun(\triangle^{ep}, Set)$ $x \in X_n : an n-simplex of <math>X := A^n \longrightarrow X$ (~> { k - simplex of \(\sigma^n \) = \(\text{[k]} \rightarrow \text{[k]} \) \(= \text{possibly degenerate k - simplex of } \) a simplicial complex 'Du" 1-cat 6- 1-00-cat bo-cat (Africially) We will realize: sSet (1,1)-cat of Categories Categories (up to isom) Cati equivalences" Cata Godon = Ani Recall D: Cocomplete ~ A + D . f! : unique colum- pres extension of f tou (19 Set) 2 f* $\begin{cases} f'X = c_0 | lm + lm \end{cases}$ · f*: right odj given by ftd: 2° -> Set (fin) How (fin), d) △ Cati · (NG)n = Fun([n), G) & Set exer N is fully faithful (A is dense in Cot;) (be will onit N and regard strict 1-cat as a singlicial set) ith hom Def · Mi C A Sub sset of those [k] - [n] s.t. Image & [n] (i) (i.e. the top cell & the ith face removed) (ex : 12 = 0/2 c office = 5 Inner anodyne is a closure of inner horns under pushouts, trfin composition, retracts

· Sparen = 1 V 1 V -- V 1 (4) $\exists G \quad X = NG$ (2) $0 < \forall i < \forall n \quad \Lambda_i^n \longrightarrow X$ i.e. $Hom(\Delta^n, X)$ L = Gij L = Gijexer (a) TFAE: (3) $\forall N$ Hom(\triangle^n, X) \Longrightarrow Hom(Spinen, X) (1) 3 C : groupord X ~ NC (b) TFAZ: (2) ANSI, 0 < Hi < N Ham (\(\Delta', \times) = Hom (\(\Lambda', \times) exer Sing (X) is a Kan complex cobserve the non-iniqueness of fact. for fix X = 3 Y homotopic (=) 3 L' x X for fi a Set Shy dethes congruence on Kan. this restricts to Kan Et CW respecting ho. eq. (€ 1-1 product preserving) ~ ho(Kan) ~ ho(CW) ~ H (gives a combinatorial model of homotopy types) Moreover, this lifts to a Q.E. of model cats (sSet, Kan-Olillen) (Top, Sem fib. etc.)
So the LHS knows all the howotopy theory of top. sp. An so-groupoid (anima TS a Kan Complex. A functor = mor of ssets

An so-category is a quasi-category Dust talking about so-cats of those yet. Det An w-groupoid (anina think: a witness the composition h = gof.

Think: a witness the composition h = gof.

Ex in fundamental groupoid, any reparametrization of path concatenation is equally good as a composition. higher horn filling condition () the choice of compositions is contractible

Fact siet has the internal how [K,X] (given by $[K,X]_n = [\Delta^n \times K,X]$) if X is a Kan cox or a geat, so is [K,X). Det For $X \in qCat$. Fun(K, X) := [K, X] "functor / shagram category" Def Kan - glat admits a right adjoint X -> X maximal sub Kan complex Map(K, X) := Fun(K, X) Fact TFAE: (1) X EqCat

(2) [\(\Delta^2 \), X\]

(3) [\(\Delta^2 \), X\]

(3) \(\Delta \)

(4) \(\Delta \)

(5) \(\Delta \)

(6) \(\Delta \)

(7) \(\Delta \)

(8) \(\Delta \)

(1) \(\Delta \)

(3) \(\Delta \)

(4) \(\Delta \)

(5) \(\Delta \)

(6) \(\Delta \)

(7) \(\Delta \)

(8) \(\Delta \)

(1) \(\Delta \)

(3) \(\Delta \)

(3) \(\Delta \)

(3) \(\Delta \)

(4) \(\Delta \)

(5) \(\Delta \)

(6) \(\Delta \)

(7) \(\Delta \)

(8) \(\Delta \)

(9) \(\Delta \)

(1) \(\Delta \)

(1) \(\Delta \)

(2) \(\Delta \)

(3) \(\Delta \)

(3) \(\Delta \)

(4) \(\Delta \)

(5) \(\Delta \)

(6) \(\Delta \)

(7) \(\Delta \)

(7) \(\Delta \)

(8) \(\Delta \)

(9) \(\Delta \)

(1) \(\Delta \)

(1) \(\Delta \)

(1) \(\Delta \)

(2) \(\Delta \)

(3) \(\Delta \)

(3) \(\Delta \)

(4) \(\Delta \)

(5) \(\Delta \)

(6) \(\Delta \)

(7) \(\Delta \)

(7) \(\Delta \)

(8) \(\Delta \)

(9) \(\Delta \)

(1) \(\Delta \)

(1) \(\Delta \)

(1) \(\Delta \)

(2) \(\Delta \)

(3) \(\Delta \)

(4) \(\Delta \)

(5) \(\Delta \)

(6) \(\Delta \)

(7) \(\Delta \)

(7) \(\Delta \)

(8) \(\Delta \)

(9) \(\Delta \)

(9) \(\Delta \)

(1) \(\Delta \)

(1) \(\Delta \)

(1) \(\Delta \)

(2) \(\Delta \)

(3) \(\Delta \)

(4) \(\Delta \)

(5) \(\Delta \)

(6) \(\Delta \)

(7) \(\Delta \)

(7) \(\Delta \)

(8) \(\Delta \)

(9) \(\ Fact I goat I kan cplx completion for (fr fr we may choose a section so we have "the" composition Joyal eq.: > 150m m ho(qCot) := (66): qcot | war: 76 Fun(K,4)= Map Cat of on-cats?

Map (B, x) ~ Map (B, x) (A - B s.t. Map(B, &) ~ Map(A, E) € Cat, < qCat Def A map of goats f: 6 - D is a Joyal eg it & in holgat) qCat Joyal eq T A map of Kan-cats 11 DK-eq 7 2 in Al-Cat Out task · or-categorical localization ~> Cato = qCat L Joyal eq [] · Compare Kan-Cat to gCat to close the self-feeding loop Kan-Cat DK-eq"

3	Relative categories & bcalizations	
Def	A relative category is a pair (C,W)	When 6: (00-) Category / poset W: a collection of morphisms of 6.
Def	$Fun((\xi,S),(D,T)) \subset Fun(\xi,D)$ full	Sub spanned by $C \xrightarrow{f} D$ S.t. $f(S) \subset T$. cat: sub sect with simplices only containing the prescribed vertices
Def	A functor & P D exhibits D as a	
	· ho CEWIJ is the 1-categorical (octration)	
	· ho C[W] is the 1-categorical (ocalization.	in((E,w), (E, E2)) =: Fin((E, E)
Rem	· 4 E It factors through Fun(E, E) -	f(w) < 9°
	· under the condition $f(u) \subset \mathfrak{D}^{\infty}$, it is e underlying anima (Map = Fun) or en	mough to ask to be an equivalence of wen To Map.
		VB & Coto Tr. Fun (B, Fun (D, E)) ~ To Fun (B, Fim (D, E))
	RelCoto 2 Coto localization &	To Fun (D, Fun(B.E)) To Fun(D, Fun(B.E))
	v = local adjoin (E, E=) = v E (unique vp -	+ + (G.W)
Poss		
Proof	Y(E,W) E RelCato. the localization &	
	W F Chote: C	\(\Delta'\) \(\de
		also: & -> (6,8)
exer	√(0 < 5) □ √(1 < 3) □ √3	Catos -> RelCat 1-1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	△° U △° — Isom equi.	Ani Catoo
Fact	RelCat -> Cat To Eade, Hally Trespective	cf. PoSot -1 Ani ess. Swj.
Hammad	od . 3 model str. [1] colibrant = RelPoSet (Lick Barrick Kom) IN
J. colleten	od . I model str. [] cofibrant = RelPoSet (comp) Set-Cat M sset	Hammock loc. SSet [whe-1] ~ Ani.
ſ		
	HelPos Lu.e.] > Kan-Cat[DK eq] = qCatl	Joyal eq'] ~ ('ata
	RelPos [w.e. 1] ~ Kan-Cat[DK eq 1] ~ qCat[

8	Simplicially enriched c	ats as on-categoria	eS			
	En] CETUJ	"homotopy	toherent realization	on of [n]"		
ex.3		(Eta):	phi (0,)	^}		
	Set-Cat		obj (o,, i Howery (i, j)	a pa-	th from to i in [h]	}
	SSet Nh.			DO 5	. []	[6] #{klackej}
	homotopy wherent ne	ne	Lo Cat - Cat	N = sSet-Ca	#	
Facts		eq under E+Nhc (a	t least between are	+ (Kan-Cat) In.	fact, these are	part of
	· Joyal eq - DK · Set-Cat No ss.	2+	90.00	Quillen	eq. of model cats.	renough for =
	Kan-Cat -> 9C	at. ho/Kam-Cat	, DK-eg) ~	ho (gCat, -	Joyal eq)	localizations
	(use: Etimner harm incl.] = how	~-wise ∏ ← D ← e	er check when h	= 3		
Def	Cat := Cat = :=	No (gCat).				
	Ani :=					
Def	$X \in \{Cat, x_0, x_1 \in \}$	$\langle \Rightarrow Map_{x}(x_{0}, x_{i}) \rangle$) → Fun(∆	,X)		
	V −C°+	Kan	1 14	exer: this	To a Kan fil	, ,
		T.	, x,) (xX = Tun(d)	(RLF	o wrt ∀horn in	scl.)
tact	& EKan-Cat, ~	$Map_{e}(x, y) \longrightarrow N$	lap Note (x,y)	۵	upute this be	1 Sinp. cptd tech
	7, 4	(Kerodon O1LA)		e e		s [1](△") < s/et-C+
(0	Control Mapaton (x, B) Cato	~ tun(x,B)			Γ 3Q, × Qμ]	
7	,= Catoo					
5						
Kem	It is possible to formula	ite (100,2) - categories	in slet &			
	qCat-Cat	> (∞,2)Cat				
	protend to those	ngh not quite yet (until y	oneda)			
Г					1 P (. 0
	now on: We work mode	J 1		we can stil		
21090	m: as long as universal like 1-cats.	constructions go, we-	cats are	glar, r	√au-Gt to e	produce examples
Ø X Co	ptions: Small combinate	esal consistation (e.g.	to establish a special	property of Ani (q	Cot formula	
2000		es diagram shapes	(1	
	A 28et: K -	» C	J. Mary III	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	inner anodyne 2	7				
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y completion eq. Sprine	[n] - an			

& Underlying H-cats we'll see: Jakeaway 1. Kan-Cat Cat ho H-Cat Cat,

a Cat I-1 J. J. Ca N

Ani ho = The Spd, qCot -> Cot -> H-Cot Kan -> Ani -> H | product preserving • C → C The enternal how Fun(6, Fun(D. E)) ~ Fun(6×D. E)

| Conservative (~o Cats: (oo, 2) - oct)

| hold) → hold)

| hold | hold | honotopy 2-cat (~ he QCat) . $\mathcal{C} \ni x, y \longrightarrow \text{Map}_{\mathcal{C}}(x, y) \longrightarrow \text{Fun}(\Delta', \mathcal{C})$ $+ \frac{1}{(x, y)} \longrightarrow \text{Fun}(\partial\Delta', \mathcal{C})$ later: Mape (-,-): 6 x C - Ani e.g. Map Cator (E.D) = Fun(E,D) by construction Many notion can be detected in holls) once data are provided in & (E Cot) ex f:x -> 4 rsom in 6: (2) [f]: [x] = [Y] in ho(6) in fact, ho(6) -> ho(6) ex 6 + D & Gt: fully faithful: (+) ho(f): ff es / f.f eso surj : (ho(f): e.s. (ho(f): e.s. ess. in (f) isom in (at) he(f): eq Ztantological for Kan-Cat. I don't see a model-indep proof. but at least: 3! factorization exer $h_0(f): eq \iff Map(\Delta^n, f): isom in Ani for <math>n = 0, 1$ (actually n = 0 follow from n = 1)

exer $h_0(f): eq \iff Map(\Delta^n, f): isom in Ani for <math>n = 0, 1$ (actually n = 0 follow from n = 1) (→ D' is a cobrit-generator of Gt) (1) fully withful iff it is an incl. of conn. components exer · F: & -> D & Ani is (2) ess. surj. If it is The-surjection. (3) equir it ho. eq.

٤	(co) limits (adjunction
T4	$K \in Set$ (or Catoo), $K \rightarrow *$ induces the diagonal functor $S:C \longrightarrow Fun(K.C)$.
Def	Let $K \xrightarrow{f} C$ be a diagram. A natural transformation $Z \xrightarrow{E} f$ exhibits $X \xrightarrow{a} limf$ If the composition
	If the composition Mapy (y, x) = Map _{Fun(K,E)} (y, x) = Map _{Fun(K,E)} (y, f)
	is an Isom in Ani. () in H.). Colimits are defined similarly.
ex	$K=\phi$ reminal (initial obj : Map $(Y, *) = *$ Map $(\phi, Y) = *$ lim totalization, Olim : geom. realization
	Fun(C.D) computed pointage.
Exer	Ani -> H preserves products & coproducts "FRx"
(00)	
Def	Lity O A Lity La Party Con Lity Exp
	S.t. YZEE, the composition
	Sit. $\forall z \in G$. the composition Mapy $(z, y) = Map(Fz, Fy) = Mapy(Fz, x)$ is an so in Ani. (global) (global) A shall along $(z, y) = (z, y) = ($
	ξ* (3) E
	· A right adjoint of F TS a pair (FR=D > E, FFR = TdB & Fun(D.D))
	S.t. $\forall c \in \mathcal{C}$, the composition
	S.t. $\forall c \in \mathcal{C}$, the composition $Map_{\mathcal{B}}(c, F^{R}d) \longrightarrow Map_{\mathcal{B}}(F_{c}, F^{R}d) \xrightarrow{\mathcal{E}_{+}} Map_{\mathcal{B}}(F_{c}, d)$ is an iso.
	Fe' C+
Fact	$\exists local adj$ at every $d \in \mathcal{D}$ \longrightarrow can assemble into a global adj.
D	COLUMN TANKS FREE FREE YOURS
Nem	I local adj at every $d \in \mathcal{D}$ can assemble into a global adj. The can be replaced by $\exists 1$ idy $\rightarrow FRF$ st. F is F FR $\downarrow V$ oneda. Odjoints are detected in N2Cat.
Def	F: 6 -> D preserves limits \iff $\forall K$ $\bigcirc G$ $\bigcirc G$ $\Rightarrow D$ $\times G$ limit come $\Rightarrow F_X \Rightarrow FG$ limit come reflects \cong \bigoplus Left adj pres colon, right adj pres limit $\bigotimes_{R} G \cong G \cong G$ \cong $\bigoplus_{R} G \cong G \cong G \cong G$
exer	left adj pres colin, right adj pres la Ran (= D =) Fun(K, B)

Grothendieck construction			(F
$E \longrightarrow \widetilde{\mathcal{U}}$	Et(F)	VI	∫F "
Some Toutological fib		1	EGL(n) x R" Y -> Set.
tibration R	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	John v	∫ 2et-)
B -> U moduli of	fibers" X - J	Set X→3/1R'EVe	et 1 = BGL(m) X - Set
Q. What do Ani & Cot clas	sify ? sheof	This is hard to speci-	24 :
E	10 = 3	any compatibly equive	alent choice will be equally good, but
functor $\triangle^h \xrightarrow{F} Cat = N_{hel}(a)$	(G+) <u>V</u>	all th	elent choice will be equally good, but a choice must be made F(n) -> F(2) // F(o)
E(M) C+	e ho. ch. diag	- N	7 11
	F(6)	(S)	$F(0) \longrightarrow F(3)$
(B. 4)*		2	
a s	In fibration pic	ture, F(i) - F(j)	are given by "transport"
A functor Def D do ed I e Pl I I @ C pdo pd		along i di dosa	ribed by a Univ. Property
A functor			Treed of
DI DI ELLO		also cohereno	ie is "automatic" e α, β, ~ (α, β), etc.
tet Dao al e	is P-cocartesian i	[5
		Ω	
€ pdo—pd;	$\mathcal{D}_{d_{1}} = \mathcal{D}_{e_{1}} \longrightarrow$	Fd.	~ e is uniquely determined
		e Ot.	as the initial obj of the pullback (if exists)
	Cpd, C Cpel-	Epdo1	
do e do e	is p-cartesian if	D/c - D/d,	
		1 -	
& Ego - by,			
" pullback across categories"			
positione de la serie de la se	s a cocent fib if	AG ====================================	Co cart. transport
	Cart fib	I II	exists
	Carl +10	bq 40 AC	
Da 0.0 5 1 5 5 4 1 5 9	Mag (d 1)		
Rem e: p-cart as Yd ED	$Map_{\mathfrak{D}}(d_1,d) \longrightarrow$	P 1	
	Mape (pd, pd) -> M	ap(pdo,pd)	
		0 00 1 1	
Rem. (co) cart edges / fibrations			e stability properties.
· co cart fibs are closed	nder pullback & Fur	(A, -)	(stack two square diagrams)
· equivalences are cocart	××	e Cot	

Def	A right fibration is	a carlesian fibration	r p: D→ C	Satisfying on	of the following equir. conditions
(2)	P: conservative AXEC, AXIX Ymor in D is	D E Ani			
ex.	(Ca) [ev, is cocart file (Ca)	d ==>d 3	.testan edge = (Cartesion Sq	· evo is cart fib
	More genally: A & B A & C	$36\times B$ B A	e.g	Cyl right fib	f/x Lieft fib
coart	file & functor which pres cacent edges cacent edges atterned	$\rightarrow \forall$			
Thu	Cat/e = = St Cat/e = = Scoart full U	Fun(E, Cot), Fun(E, Ani) Cat/E Apr Cat/E Cat/E Cat/E	Cat/e = 5 Cat/e = 5 Cat/e = 5	Fun (6°, A	Cat)
Ruk.	functoriality in				
,	The universal lfib & cocart fib	Ani Cat (D	(e, te-d)		

exe	ercise	S 1	(1) •	SI	wa	Gpd str =	→ C	str C	<u>,</u> ≥ 5.)et							a can	re Cons	net	
							0				۵ د	atego	ry fro	m its	nerv	e)				
	- 0			Sh	ou the	horn-	Fillin	g cho	racte	rizat	ton o	f the	esse	ential	ima	ge				
(5)	It d	9 6	Kan.	- Cat	, Show	that	$\sqrt{3}$		N _L (C) (4	ن ویمل	ill and	dicate	؛ +لو						
							V3 €	/ A			broo	f tor	- the	general	case					
(3)	From	4/20	a de	Part	Paren	check	loft	adin	Mts	nrese	erve	Colin	~							
(-)				() ()	, ,															
							1,200	1 days	11/13	bieze	2102	200								
(a)	_	1.	D		ρ	N	0 -	7 0.1												
(4)	DEONE	- th	e to	llowi	ng tor	mula	Η.	1 did	n't.											
	D	()		\cap																
	Prop	76	, ∈	ato		$\stackrel{\sim}{\longrightarrow} c$ $\stackrel{R_{u}}{\longrightarrow} c$	0	_	10			_	_		(0	C- \	(-		C >	\
		;) t	- : · · ·	- →	Ani		'olim	+ =	=)	Fl	,)	ian t	- ~	Maple	(to,) L)	(~ t	سرو(د	(,) F)	_)
	(ii) F	: · C	, — ,	Cot .	\rightarrow c	wile	F =	:(J'F) [coc	nt-17	, Q	zmE	~ Fui	Coant	(4)	SF))		
		,	می	SF											18			Coca	rt sec	trous
				E	Cont	Ru	k (%	.) speci	alizes	to (d (i.	ecanse	. Am	or Th	left.	fib is	cocar	+ .		
(5)		tr.	4	+12	e fun	ctor (o	Mo	_)_a		1 4	x Pos	9		AL	27	۔	7 dz	2,4		
(-)	٥٥٨	3 (10	<u> </u>	(00	, , , ,	(()	, +	16		Į Į	141	F	. (Y	5P Δ.	-\'	\'\				
						(0	4 9				(6)	. – (um (c	s , ()\	^,))				
	Dr	ove	£	70	المريدة (r - prese														
	T.				, Kinci	1 - brese	growa													
(,)	^				\	1			-	O	0	0.4								
(6)	HSS	uma	4	he	Yourde	x lemm	a 4	hat	2:-	Fully	taith	ful,								
	· 5h.	٠ +	hat	H	: f:	6-3	D -	has c	100	2al 1	eft (right	t adi	taile	for	A q	.€₽	,		
	ther	1 a	MΘ	inb(e into	a for	nctor	- fr	, fR	\mathcal{D}	->	6								
	and	(n	ND1C(ner	2/ven	that t	hese	are 1	migi	uly	deter	mine	d f	on f						
									(1										
	· SL	91.1	Hap	e 0	بري برماويد	ce to c	الم الح	of do	Buil	On 17	2 0	lì l								
												.								
(7)	C .			~ l.	9	2			4	, f	P		(.	- 0 0		D _ /	Λ·)			
(1)	2 app	21.6		isolt Se	m 6%	27		000	^ (0	رن		(or	المحاصد	w E) ~	mi)			
	trove	•	Xin	ΛŦ		e lim	Kim Ex	+01	·y											
			_			2	+ '	0	0	(-										
		•	زبأم	m C	olin f	2	- C	olin.	Ŧ,	(for	r this	. Sh	b-ex	: (00	ali Za	Hoon	is co	final)	
			\ \		67			6												