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Chapter 1

Introduction

This thesis focuses on developing the fundamental theory of categorical spectra, a higher-categorical
generalization of the notion of spectra. Let S denote the (∞, 1)-category of ∞-groupoids (a.k.a.
anima, weak homotopy types, spaces) and S∗ be that of pointed ∞-groupoids. Recall that the
category of spectra is defined as the limit along the loop functor on S∗:

Sp := lim(· · · Ω−→ S∗
Ω−→ S∗).

In other words, a spectrum X is a sequence of pointed∞-groupoids (Xn)n∈N equipped with the
identifications Xn

∼−→ ΩXn+1. For 0 ≤ n ≤ ∞, let nCat denote the (∞, 1)-category of (small)
(∞, n)-categories. That is, we set 0Cat = S and inductively define (n + 1)Cat = (nCat)-Cat
as the (∞, 1)-category of nCat-enriched categories. We also set ∞Cat = limn nCat, i.e., an
(∞,∞)-category X is a compatible collection of the underlying (∞, n)-categories X≤n given by
discarding higher noninvertible cells. An essential feature of ∞Cat is that it is a fixed point of
enrichment: (∞Cat)-Cat ≃ ∞Cat. The (∞, 1)-category CatSp of categorical spectra is defined
by replacing S in the definition of Sp by ∞Cat:

CatSp := lim(· · · Ω−→∞Cat∗
Ω−→∞Cat∗),

so a categorical spectrum X is a sequence (Xn)n∈N of pointed (∞,∞)-categories with identifica-
tions Xn

∼−→ ΩXn+1. Here, the loop of a pointed (∞,∞)-category means the (∞,∞)-category
of endomorphisms of the base object: Ω(X,x) = HomX(x, x). A spectrum is now an example
of a categorical spectrum where every component is an ∞-groupoid: Sp ⊂ CatSp.

Notice X0
∼−→ ΩX1

∼−→ Ω2X2
∼−→ · · · ; just as for ∞-groupoids, n-fold loop object is canoni-

cally an En-monoid object. In the limit, every component Xn of a categorical spectrum gets a
structure of a symmetric monoidal (∞,∞)-category. Conversely, given a symmetric monoidal
(∞,∞)-category X0, there is a minimal choice for Xn with X0

∼−→ ΩnXn, that is the (connec-
tive) delooping Xn = BnX0 of X0. A categorical spectrum is connective if it is determined by
X0 in this way. They form another class of examples equivalent to symmetric monoidal (∞,∞)-

categories: B∞ : CMon(∞Cat)
≃−→ CatSpcn ⊂ CatSp. Note that a non-grouplike E∞-space is a

special case of this example.
Of course, this is a naive categorification that anyone could try (in fact, it was considered

independently by many groups of people: Remark 3.3.6). Categorification is somewhat of an
art than a recipe and a naive one is sometimes not the right thing to do. Therefore, it is
fair to question how fruitful the notion is. As usual for an abstract mathematical structure,
there are two layers of affirmative answers to this question. On the surface layer, we wish
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6 CHAPTER 1. INTRODUCTION

to have enough examples, old and new, to show that it is a good organizational language for
the relevant structure it abstracts. This is mostly achieved in the thesis of Stefanich [Ste21].
The notion of categorical spectrum is a great language to bundle iterated categorifications.
The (∞, 1)-category CatSp contains Sp and CMon(∞Cat) as full subcategories, as well as more
interesting examples such as the categorical spectra of iterated spans and iterated modules.
The functoriality of the n-quasi-coherent sheaves and the compatibility across different n is
formulated as being a map of categorical spectra from that of iterated spans of the (pre)stacks
to that of iterated modules.

In the deeper layer, however, one asks if they are legitimate mathematical objects beyond a
language. The utility of spectra partially comes from the fact that they admit various interre-
lated interpretations (the following list is roughly taken from [Lur18, §0.2.3]):

• Spectra are infinite loop spaces; this is the definition we chose.

• Spectra are generalized abelian groups; there is an equivalence between infinite loop spaces
Ω∞X for a spectrum X and grouplike E∞-spaces. In particular, we have π0 : Sp → Ab
and an inclusion Ab → Sp as the heart of the Postnikov t-structure. Moreover, there is
a symmetric monoidal structure ⊗ = ⊗S deriving the tensor product of abelian groups.
This viewpoint allows us to develop the whole “brave new” versions of classical algebra
and algebraic geometry, called higher algebra and spectral algebraic geometry.

• Spectra are stable homotopy types; for instance, this is apparent in the definition of
finite spectra using the Spanier-Whitehead category. Namely, for two finite pointed CW-
complexes X,Y , the space of maps between their suspension spectra is computed as

MapSp(Σ
∞X,Σ∞Y ) ≃ colim(MapS∗

(X,Y )→ MapS∗
(ΣX,ΣY )→ · · · ).

A finite spectrum is a shift Σ∞−nX of a suspension spectrum of a finite CW complex,
and general spectra are filtered colimits of finite spectra: Sp = Ind(Spfin). Moreover, the
Freudenthal suspension theorem implies that the above colimit sequence stabilizes after
finite suspensions.

• Spectra are generalized (co)homology theory; more precisely, given a spectrum E, one
defines the associated cohomology theory En(X) = π0 MapS(X,Ω

∞−nE) and homology
theory En(X) = πn(Σ

∞X ⊗ E). The Brown representability theorem says this gives a
bijection between equivalence classes of cohomology theories and those of spectra. As for
homology, it leads to another neat definition of spectra as reduced excisive copresheaves
on finite pointed ∞-groupoids (or CW complexes): Sp ≃ Exc(Sfin∗ ,S). This perspective is
essential in Goodwillie’s calculus of functors; spectra play the role of the linearization of
∞-groupoids.

• Spectra is the universal stable (∞, 1)-category: more precisely, Sp is the free stable pre-
sentable (∞, 1)-category generated by a single object (the sphere spectrum) S ∈ Sp, i.e.,
evS : LFun(Sp,C) → C is an equivalence for a stable presentable (∞, 1)-category C. It
implies that Sp is the tensor unit of the symmetric monoidal (∞, 1)-category PrLst of pre-
sentable stable (∞, 1)-categories for the Lurie tensor product of presentable categories,
which provides an elegant way to define the tensor product of spectra. This machinery is
also essential for categorified sheaf theory, including the recent development on six functor
formalism [LZ17][Man22].

Heuristically, we would like categorical spectra to admit similar interpretations but with every-
thing directed or lax:
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• Categorical spectra are infinite loop higher categories; again, this is essentially our defini-
tion.

• Categorical spectra are generalized commutative monoids and symmetric monoidal cate-
gories; we have already seen that connective spectra are equivalent to symmetric monoidal
(∞,∞)-categories and a general categorical spectrum is a compatible sequence (Xn) of
possibly nonconnective deloopings of X0. In particular, a robust theory of categorical
spectra leads to a robust derived algebra of commutative monoids. We wish categorical
spectra to play a similarly fundamental role in categorified algebra as spectra do in higher
algebra. In particular, we need a tensor product of categorical spectra. In many examples,
X0 is a classical object (of categorical level 0 or 1), and Xn is obtained by iterated cate-
gorifications. In other words, the new interesting information grows to the cohomological
direction. For this reason, Johnson-Freyd [Joh23] proposes to call the new categorified
algebra the deeper algebra, in contrast to higher algebra whose derived information grows
to the homological direction.

• Categorical spectra are stable directed homotopy types; this is based on the interpretation
that (∞,∞)-categories are directed homotopy types. That is, (∞,∞)-categories are like
cell complexes, but with directions. Just as spectra are like CW complexs with negative
dimensional cells, categorical spectra are like (∞,∞)-categories with negative dimensional
cells. Additionally, a Spanier-Whitehead style definition and a form of Freudenthal sus-
pension theorem are desiable.

• Categorical spectra are “(co)homology theory” of higher categories; in other words, we
would like an axiomatization of the functors on (∞,∞)-categories that categorical spectra
represent. In particular, we must understand the correct analog of excision properties.
This is more or less equivalent to understanding which higher categorical colimit in CatSp
is also a limit, i.e., we would like to classify the absolute colimits in CatSp.

• Categorical spectra are universal stable presentable Gray-bimodules; as we will see below,
the natural replacement for the cartesian product in the higher categorical world is the
(lax) Gray tensor product. Accordingly, the ambient categorical setting will in general only
have compositions of higher cells up to some noninvertible higher cells. Once we overcome
the relevant difficulty around the Gray tensor product, it is more or less clear that CatSp
is the universal presentable Gray-bimodule with invertible loop-suspension. The tensor
product of categorical spectra falls out of it. However, stability for (∞, 1)-categories can
be defined in many other ways; understanding the appropriate notion of stability boils
down to understanding the excision properties, or the absolute colimits.

In essence, the theme of this project is to explore this list. In particular, we will pave the way to
the tensor product of categorical spectra based on the last viewpoint, and commence the study
of absolute colimits of CatSp —since the notion of weighted colimits uses the tensoring by the
enriching category, we already need the tensor product to study the notion of stability. Now we
expand the contents of the paper, after the following table of analogies:
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Classical Mathematics Homotopy Theory Higher Category Theory

equality homotopy morphism
sets Set = (0, 0)Cat spaces/∞-groupoids S = 0Cat (∞,∞)-categories ∞Cat

— homotopy n-type (∞, n)-category
Cartesian product × Cartesian product × lax Gray tensor product ⊗

(1, 1)-categories (1, 1)Cat (∞, 1)-categories 1Cat Gray-categories (∞Cat⊗)-Cat
abelian groups Ab spectra Sp categorical spectra CatSp

grouplike E∞-spaces ≃ Spcn CMon(∞Cat) ≃ CatSpcn

— loop Ω(X,x) = AutX(x) Ω(X,x) = EndX(x)
— suspension Σ = BZ ∧ (−) Σ = BFreeE1

= BN ? (−)
free functor Set→ Ab suspension spectra Σ∞+ : S→ Sp Σ∞+ :∞Cat→ CatSp

integers Z sphere spectrum S finite set categorical spectrum F
tensor product ⊗Z tensor (smash) product ⊗S tensor product ⊗F
abelian categories (pre)stable categories stable Gray-bimodules

Higher category theory

The first two chapters of the body of the thesis, as well as the appendix, are spent on preparation.
In Chapter 2, we will give a model-independent exposition of the theory of (∞,∞)-categories.
Our main focus will be on the comparison between enriched-categorically defined notions and
the notions that are native and specific to∞-category theory. In doing so, we will pass between
weak and strict notions of higher categories; we make a computation on the strict objects and
left Kan-extend to the weak world. The Steiner theory of the Appendix A provides an algebraic
language for computations of strict ∞-categories.

The central character of the (∞,∞)-category theory specifics side of the story is the (lax)
Gray tensor product. It is a biclosed monoidal structure on∞Cat that acts additively on category
levels (compare to the fact that nCat ⊂ ∞Cat is closed under the cartesian product (in fact, all
limits and colimits)). More precisely, it is characterized by □m ⊗□n ≃ □m+n, where □n is the
n-category called the (fully lax) n-cube (we refer the reader to Example 2.4.4 for some pictures).
The main technical complication comes from the non-commutativity, essentially coming from
the choice of the direction of the 2-cell in the cube category □2 = □1 ⊗ □1. For us, the most
important result will be Lemma 2.5.1 that compares the enriched-categorical suspension and the
suspension as a quotient of the Gray cylinder, i.e., the Gray tensor product with the interval.

Most of the contents in the section are well-known to experts and appear in the literature
such as [Cam23b][Lou23] (see also [AM20] for the strict case). However, we will pay special
attention to not making any mistake with duality involutions (this corresponds to the sign issue
in the presence of negatives, e.g. in Sp), as it will be crucial in the later chapters.

Categorical spectra

Chapter 3 is another preparation chapter. We begin with the study of loop-suspension ad-
junctions and the delooping hypothesis. In particular in Proposition 3.1.9, we observe that
the loop-suspension is the tensor-hom adjunction for lax smash product with the directed circle
S⃗1 = BN, so ΣX ≃ S⃗1 ? X (where ? is to ⊗ as ∧ is to ×). We will then define categorical
spectra precisely and include some examples that are universally produced by considering a
levelwise property of categorical spectra. We close the section with a formal study of the finite-
ness properties of categorical spectra. More than half of this chapter is a summary of [Ste21,
Chapter 13], simplified by quickly specializing to the situation of our interest, i.e., from enriched
(∞, 1)-categories to (∞,∞)-categories.
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Tensor product of categorical spectra

Chapter 4 is devoted to the proof of our first main theorem: the construction and the universal
properties of the tensor product of categorical spectra. The strategy was mentioned above, but
let us describe the method and the obstacle in more detail. Recall that the tensor product
(always assumed to be biclosed) of abelian groups is characterized by the fact that the free
abelian group functor Free : Set → Ab promotes to a symmetric monoidal functor. The tensor
product of spectra is similarly characterized by the fact that Σ∞+ : S → Sp promotes to a
symmetric monoidal functor. However, the homotopical nature of the object makes it impossible
to even formulate a correct universal property without a solid foundation of (∞, 1)-category
theory. Lurie first constructed a symmetric monoidal structure ⊗ on PrL promoting the presheaf
functor PSh : Cat→ PrL to a symmetric monoidal functor1. A (commutative) algebra object in
PrL is precisely a presentably (symmetric) monoidal category.

Theorem ([Lur17]). Σ∞+ : S → Sp is an idempotent E0-algebra in PrL, i.e., Σ∞+ ⊗ id : Sp ≃
S⊗Sp→ Sp⊗Sp is an equivalence. Since the forgetful functor CAlgidem(PrL)→ AlgidemE0

(PrL) is

an equivalence, Sp uniquely promotes to an object of CAlg(PrL) whose unit is the sphere spectrum
S.

This method is robust and elegant, so we wish to play the same game with categorical
spectra. However, it turns out to be trickier than it may seem. First, one cannot expect
Σ∞+ : S ↪→ ∞Cat → CatSp to be an idempotent E0-algebra in PrL, as the category ∞Cat is
already not idempotent2 over S. One can more reasonably ask if Σ∞+ : ∞Cat → CatSp (or
equivalently, Σ∞ : ∞Cat∗ → CatSp) is idempotent, but to make sense of it, we must choose
a monoidal structure on ∞Cat. The obvious choice would be the Cartesian product, but the
suspension is far from being a module map over it : if X,Y are m,n-categories respectively, then
X ∧ΣY is a max{m,n+ 1}-category, while Σ(X ∧ Y ) is a max{m,n}+ 1-category, so X ∧ΣY
and Σ(X ∧ Y ) does not even have the same category level in general. This is the same problem

as ΣX ̸≃ S⃗1 ∧X.
This observation suggests that we should use a monoidal structure that adds the category

level; fortunately, we have already proven that the Gray tensor product satisfies ΣX ≃ S⃗1 ?X.
In particular, Σ∞ :∞Cat∗ → CatSp is a morphism of right ∞Cat∗-modules. However, now the
noncommutativity is a serious obstacle; it makes no sense to ask the idempotence of a right
module over a noncommutative algebra because there is no relative tensor product. It turns
out that one can save the situation by lifting Σ to a bimodule morphism ∞Cat∗ → ∞Cat∗. In
fact, we will prove that there is a unique such lift if we twist the bimodule structure on one of
∞Cat by the total dual involution. In terms of the coefficient object S⃗1, this means that we may
commute objects with S⃗1 in a completely canonical manner provided we twist the object by the
total dual involution: S⃗1 ?X ≃ X◦ ? S⃗1. We call this the half-central structure of S⃗1. This is
of fundamental importance beyond this application; it is the higher categorical incarnation of
the Koszul sign rule: since we have no negatives to express the sign, we must twist one side of
the equivalence by an appropriate duality. Once the half-central structure of S⃗1 is understood,
the rest of the work to show the following is rather formal:

Theorem A (=Theorem 4.2.1). The functor Σ∞+ :∞Cat→ CatSp is an idempotent E0-algebra

in BMod∞Cat⊗(Pr
L). In particular, CatSp admits a unique biclosed E1 structure ⊗ underlying

1This is an example of the microcosm principle: to talk about an object with a certain structure (e.g.
a commutative monoid), we must first equip the ambient category with the corresponding structure (e.g. a
symmetric monoidal structure).

2In fact, the equivalences CAlgidem(PrL)
∼−→ AlgidemE1

(PrL)
∼−→ AlgidemE0

(PrL) and the fact that (∞Cat,×) ∈
CAlg(PrL), (∞Cat,⊗(op)lax) ∈ Alg(PrL) has the same underlying E0-algebra (i.e, the unit is terminal) disproves
the idempotence.
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an ∞Cat⊗-algebra structure (in PrL) promoting Σ∞+ to an ∞Cat⊗-algebra morphism. Moreover,

the monoidal category CatSp⊗ can be obtained by universally inverting S⃗1 ∈ ∞Cat?∗ .

The reader who finds the noncommutativity of the tensor product disturbing is invited to
check Remark 4.2.5 for a few ideas that potentially remedy the situation. However, the Gray
tensor product seems unavoidable in higher category theory, at least from the viewpoint that
(∞,∞)-categories are directed homotopy types. Also, we expect that any useful commutative
variant of the tensor product receives a lax monoidal functor from our tensor product. In other
words, the results we prove using our tensor product are universal and can be transferred to a
preferred situation if required. We hope the following chapters justify the richness and naturality
of the theory unlocked by this tensor product of categorical spectra.

Duality, absolute colimits and stability

Recall that one of the standard motivations to introduce spectra is the Spanier-Whitehead
duality. That is, unlike the symmetric monoidal categories S∗ or Sp

cn (where the only dualizable
objects are the free ones on finite sets), Sp has many interesting dualizable objects: any finite
(i.e., compact) spectrum is dualizable, which is an upper bound of dualizable objects (as in
any closed monoidal category with a compact unit object, cf. Proposition 3.5.10). This reflects
the fact that the category of spectra has better exactness properties: by Sp ≃ LFun(Sp,Sp) ≃
RFun(Sp,Sp)op, an object X ∈ Sp is dualizable if and only if X ⊗ (−) ∈ RFun(Sp,Sp), i.e. if it
preserves limits. By stability, limits commute with finite colimits, so if X is built out of finite
colimits (and shifts) of F, X is dualizable. More generally, weighted colimits in Sp for a finite
weight (i.e., a diagram J → Spfin for a finite category J) is limit-preserving, or absolute: it is
preserved by any Sp-enriched functors. This captures the essence of stability in a way free of an
ad-hoc choice of the shape of relevant diagrams.

In the same spirit, we expect a good supply of dualizable objects and absolute colimits in
CatSp. Although we are not yet able to classify all of them, we will show that many fundamental
finite categorical spectra and “finite weights” are dualizable (or absolute). For the following,

let X ← Y → Z be a span of categorical spectra and X
−→
⨿Y Z denote the directed pushout

X ⨿{0}⊗Y (□1 ⊗ Y )⨿{1}⊗Y Z.

Theorem B (=Theorem 5.2.7, Corollary 5.2.12). The functor
−→
⨿ : Fun((• ← • → •),CatSp)→

CatSp admits a right adjoint given by X 7→ (Σ∞−1Iop ⊗X ← Σ−1X → Σ∞−1I ⊗X), where I
is the interval category 0 → 1 with the basepoint at 0. It follows that suspension spectra of the
cubes, orientals, and objects of Joyal’s Θ category are all dualizable.

We expect that proving the absoluteness of these basic examples and discussion on closure
properties of absolute weights will lead to the complete classification of absolute weights. Note,
however, that the ordinary pushouts are not absolute. In fact, it forces the invertibility of
(∞, 1)-categorical loop-suspension, i.e., the (∞, 1)-categorical stability. Therefore, to classify
absolute colimits, we must define the notion of “finite weights” in a way that excludes such “too
invertible” examples. A particular case that is worth spelling out is the following.

Theorem C (=Theorem 5.3.1). Let f : X → Y be a morphism of categorical spectra. There is a

canonical equivalence between the lax cofiber
−→
cof(f) = 0

−→
⨿X Y and the lax fiber of the suspension

−→
fib(Σf) = 0

−→×ΣY ΣX. Moreover, the canonical triangle Y → (
−→
cof(f) ≃

−→
fib(Σf)) → ΣX is a

(non-lax) bifiber sequence.

In this situation, we say Z =
−→
cof(f) is an extension of ΣX by Y (and similarly for a

coextension
←−
cof(f)). The theorem is a lift of Barratt-Puppe sequence in the category of spectra.
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This is obvious in stable (∞, 1)-categories, but the result here is surprising because a naive
extension of the standard facts in stable (∞, 1)-categories tend to fail, e.g., pasting law of
directed pushouts fails and lax fiber sequences do not coincide with lax cofiber sequences. This
suggests that the classical notion of (co)fiber sequences in a stable (∞, 1)-categories splits into
three different classes of sequences, i.e. lax cofiber sequences, bifiber sequences, and lax fiber
sequences, and they appear in a three-periodic pattern.

Categorical spectra with adjoints and applications to TQFT

The knowledge of absolute colimits in categorical spectra is not only theoretically important
but also a useful tool for computation. One can often draw a strong consequence out of a
coincidence of limits and colimits3. In particular, even if one is only interested in symmetric
monoidal (∞, n)-categories, studying categorical spectra allows a better understanding of their
(pre)stability. We will apply this principle to the study of TQFTs. We say a categorical spectrum
(Xn) is d-adjointful if for k < d+ n, any k-cell of Xn has left and right adjoints. For instance,
a (∞, d)-category C has duals in the sense of [Lur09c] (i.e., its objects are fully dualizable) if
the corresponding connective categorical spectrum B∞C is d-adjointful (note that objects of Xn

are dualizable if 1-morphisms of Xn+1 has adjoints). We denote the full sub (∞, 1)-category of
d-adjointful categorical spectra by CatSpd-adj ⊂ CatSp. We also let dCatSp ⊂ CatSp denote the
full subcategory of d-categorical(ly truncated) spectrum and dCatSpadj = dCatSp ∩ CatSpd-adj.

Theorem D (=Theorem 6.1.8, Corollary 6.1.10). The subcategories CatSpd-adj ⊂ CatSp are
closed under extensions. Moreover, the tensor product of categorical spectra localizes to categor-
ical spectra with adjoints. More precisely, there is a (unique) tensor product functor making the
following diagram commute (where the vertical arrows are the localizations):

kCatSp⊗ lCatSp (k + l)CatSp

kCatSpadj ⊗ lCatSpadj (k + l)CatSpadj

⊗

Lk-adj⊗Ll-adj
L(k+l)-adj

⊗adj

In particular, there are unique tensor products on 0CatSpadj and ∞CatSpadj promoting the lo-
calizations CatSp ↠ 0CatSpadj,∞CatSpadj to monoidal functors.

The proof reduces to a certain pushout formula for □1⊗Adj, where Adj is the walking adjunc-
tion 2-category. The proof takes up the bulk of Section 6.1. Using this result, we can formally
pack the framed cobordism hypothesis of different dimensions to cooperate in a multiplicatively
structured way4:

Theorem E (=Corollary 6.2.8,Theorem 6.4.1). Assume the framed cobordism hypothesis. Then

•
⊕

n≥0 B
∞−nBordfrn is a tensor algebra in CatSp0-adj freely generated by a (−1)-cell.

• The stably framed bordism (∞,∞)-category B∞Bordsfr is the tensor unit of CatSp∞-adj.

3For instance, ambidexterity is a technology of this flavor, which has recently opened some new directions in
chromatic homotopy theory.

4it is convenient to normalize by shifting B∞Bordn ∈ CatSpn-adj down to B∞−nBordn ∈ CatSp0-adj so that
we may avoid the use of graded monoidal structure. It also aligns with the philosophy of deeper algebra to use
the codimensional indexing and puts the partition function in the zeroth degree.
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In both cases (at least intuitively) multiplication in the algebra structure is given by the
cartesian product of manifolds. Notice that it is not possible to formulate the above struc-
ture without the lax tensor product because the cartesian product adds the dimension of the
manifolds5. Note, however, that everything up to here could have been done in the world of
connective categorical spectra, i.e., symmetric monoidal (∞,∞)-categories, by appropriate rein-
dexing. The true power of our theory lies in the stability results such as Theorem C, which
we now use. A cobordism category with singularities is a cell-complex-like object built up from
the ordinary cobordism categories (with tangential structures), i.e., Bk in the following form of
iterated (co)extensions of categorical spectra (in CatSp0-adj):

0 Bd Bd−1 · · · B1 B0

B∞−dBordX̃
d

d B∞−(d−1)BordX̃
d−1

d−1 B∞−1BordX̃
1

1 B∞BordX̃
0

0

where X̃k are O(k)-spaces classifying tangential structures. Each extension Bk is classified
by an O(k)-equivariant morphism Ek : X̃k → (Ω∞−k−1Bk+1)≤0. Recall that an extension of
categorical spectra can either be described as a lax fiber or a lax cofiber. The former describes
maps into Bk, allowing us to interpret Bk geometrically. The latter describes maps out of
it, i.e., TQFTs. This dual description is precisely the claim of the cobordism hypothesis with
singularities.

Theorem F (=Theorem 6.3.5 [Lur09c, Theorem 4.3.11]). The categorical spectrum Bk admits

a description as the cobordism category of X⃗-manifolds as in [Lur09c, Definition Sketch 4.3.2],
with the singularity datum (X̃d, X̃d−1, Ed−1, · · · , X̃k, Ek). Moreover, for any 0-adjointful cate-
gorical spectrum A, there is a cartesian square

Map(Bk, A) Map(Bk+1, A) Z0

MapO(k)(X̃
k, (AlgE0

(Ak+1))
≤0) MapO(k)(X̃

k, (Ak+1)
≤0) Ω∞−k−1Z0 ◦ Ek.

∋

∋

Note that this formulation is in some sense dimension independent: Bd can be 0 if X̃d = ∅,
so the value of d does not matter, as far as the sequence is bounded below. This is somewhat
curious because, in the study of TQFTs, dimension is usually a fixed parameter.

Notations and Terminologies

• We mainly follow the standard notations of [Lur09b][Lur17], with a few exceptions below.

In particular, for a type of categorical object, we use (̂−) to denote the (very large) category
of the large variant of that object.

• From now on (except in Appendix A), we will assume the objects are homotopical by
default; in particular, we leave “∞-” in (∞, n)-categories or∞-category/groupoid implicit
and call them n-categories or category/groupoid. The ((∞, 1)-)category of n-categories
will be denoted by nCat. Similarly, ∞-operads in the sense of [Lur17] will be called
operads. We still denote the category of (∞-)groupoids by S := 0Cat, even though we

5This theorem was roughly mentioned in [Yua]; however, the discussion is not made rigorous due to the lack
of correct background setup.
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will avoid calling them spaces unless they are supposed to have additional structures of
topological spaces or CW complexes. Presheaves takes value in groupoids by default:
PShC(D) := Fun(Dop,C) and PSh(D) = PShS(D) = Fun(Dop,S).

• We let PrL ⊂ Ĉat ⊃ PrR denote the (non-full) subcategories whose objects are presentable
categories and the morphisms are left and right adjoint functors, respectively. We let
LFun(C,D) ⊂ Fun(C,D) ⊃ RFun(C,D) denote the full subcategory spanned by the left
adjoints and the right adjoints. We see PrL as a symmetric monoidal category by Lurie
tensor product ⊗ (the internal hom is LFun). Also, PrLω ⊂ PrL will denote the (non-full)
symmetric monoidal subcategory of compactly generated categories and compact-object
preserving left adjoints. Its opposite category, PrRω ⊂ PrR is the category of presentable
categories and filtered colimit preserving right adjoints.

• The (1, 1)-category of strict n-categories will be denoted by nCatstr (the notation (n, n)Cat
will mean the (n+ 1, 1)-category of weak (n, n)-categories).

• We write Map for the hom groupoid of a (possibly underlying) (∞, 1)-category and Hom for
a generic hom object of an algebroid or an enriched category, in particular, the cartesian in-
ternal hom for∞Algbrd. The notation [−,−] (resp. J−,−K) will mean the left (resp. right)
internal hom for the Gray-type tensor product, i.e., Map(X ⊗ Y, Z) ≃ Map(Y, [X,Z]) ≃
Map(X, JY, ZK). As above, Fun will mean the functor ((∞, 1)-)category between category-
type objects.

• We let ∗ denote generically a terminal object (most often the contractible category), while
1 denote the unit of the monoidal structure under consideration. We use C∗ and C∗∗ to
denote the category of pointed and bipointed objects, i.e., the category of objects under ∗
and ∗ ⨿ ∗.

• We tend to use ⊔ to denote a disjoint union (i.e., a coproduct that is disjoint) whereas ⨿
will mean a generic coproduct. The wedge sum ∨ either means the coproduct in C∗ or the
bipointed wedge sum (typically sink-source), i.e., (X,x0, x1) ∨ (Y, y0, y1) = (X ⨿ Y/(x1 =
y0), x0, y1). We will not be very strict about the distinction of the notation.

• ×, ∧ will mean the cartesian product and the corresponding smash product. ⊗ denotes
the lax Gray tensor product of unpointed∞-categories or the tensor product of categorical
spectra, whereas ? denotes the Gray smash product of pointed ∞-categories.

• We σ to denote the unreduced suspensions (of ∞-algebroids/categories and augmented
directed complexes), reserving Σ for the (categorical) reduced suspension. Note that this
does not agree with the usual suspension for ∞-groupoids. We use B to denote (the
univalent completion of) the delooping of a monoidal category. For categorical spectra,
we may both use Σ and B for the shift functor (also denoted by [1] as usual); we will be
flexible with the notation here.

• G, ∆, □□ , Θ denote the (1, 1)-category of globes, orientals, (fully lax) cubes, and Joyal’s
theta. Cn, ∆

n, □n denote the n-cell, the n-oriental (i.e., the fully lax simplex) and the
n-cube. Note the somewhat nonstandard notation for the orientals. We use Θ1 to mean
the usual simplex category, whose objects (1-categorical simplexes) are denoted by [n].

• For C ∈ Ĉat, we denote the full subcategory of (homotopically) n-truncated objects by
C≤n ⊂ C. In contrast, for X ∈ ∞Algbrd, we denote the n-categorical truncation by
X≤n ⊂ X, i.e., the right adjoint to the inclusion nAlgbrd ↪→∞Algbrd. There is also a left
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adjoint to the inclusion, which we denote by X 7→ ≤nX, but the notation is ambiguous
and it can mean the further localization to nCat, nCatstr or nGaunt. See Section 2.1 for
details.

• There seems to be no consensus about whether our Gray tensor product should be called
the lax or oplax Gray tensor product. We will follow [AM20]. That is, the one making the
linearization functor ∞Catstr → adCh strong monoidal with respect to the usual Koszul
sign rule is the oplax Gray tensor product, and we take its opposite, the lax tensor product
as default. This choice is more convenient for us, ultimately because of the choice we made
about the way a monoidal functor is identified with a bimodule in Chapter 4.
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Chapter 2

Preliminaries on category theory

The goal of this chapter is to equip the reader with background knowledge on n-category theory
(i.e., (∞, n)-category theory) including the case n =∞. It is largely meant to be expository, but
we also provide some proof of the folklore results that the author could not find in the literature.
Steiner’s theory on strict ∞-categories is at the core of techniques, but it is separated in the
appendix so that the reader can avoid getting too distracted by the combinatorics of strict
∞-categories.

We start with a general introduction in Section 2.1. Our focus is to provide (without proofs)
various natively (∞, 1)-categorical treatments of n-categories. They are roughly divided into two
flavors: one is as enriched categories: n-categories are categories enriched in (n− 1)-categories.
This is inductive by nature. Another is by presentation: the category nCat of n-categories is a
localization of presheaves PSh(C), where C ⊂ nCat is some full sub (1, 1)-category of combina-
torial shapes and the localization is prescribed by gluings that exist in C. Heuristically, C is a
lax version of test categories, i.e., we probe the structure of n-categories by mapping combina-
torial shapes into it. This approach separates combinatorial complexities from the homotopical
complexity and makes combinatorial calculation possible. Another advantage is its flexibility,
offering different options for C depending on our purpose.

Section 2.2 and Section 2.3 introduces two of the fundamental operations: the (unreduced)
suspension and duality involutions. Roughly speaking, the suspension takes X ∈ nCat to σX ∈
(n+1)Cat which is generated by two objects ⊥,⊤ and HomσX(⊥,⊤) = X. This is treated most
naturally from enriched category theory. Duality involutions generalize the operation (−)op :
Cat → Cat of taking the opposite categories. There are (Z/2)n-worth of duality involutions on
nCat by flipping morphism of specified dimensions. In fact, these are all automorphisms of nCat.

Section 2.4 introduces another fundamental operation of the Gray tensor product of ∞-
categories. It is a noncommutative monoidal structure that will replace the role of cartesian
products in many situations. Heuristically, the Gray tensor product of two ∞-categories looks
like the cartesian product except that every product cell is filled with a non-invertible arrow
of a coherently chosen direction. The tensor product is naturally characterized on the dense
full subcategory □□ ⊂ ∞Cat of the cubes and as such it is rooted in the presentation over the
cube category. Using the Gray tensor product, we can define two suspension-like operations by
tensoring the interval either from left or right and collapsing the top and bottom faces of the
cylinder. We will show in Section 2.5 that these agree with the suspension (up to a duality
involution in one case). This will be a crucial ingredient in the later chapters.

15
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2.1 n-categories and n-algebroids

There are a few different attitudes when working with (∞, n)-categories. In this thesis, we take
the model-independent approach; we assume and work natively in (∞, 1)-category theory (as
developed in [Lur09b]) and let nCat be the (large) category (recall the “implicit∞-” convention)
of (small) (∞, n)-categories without choosing a point-set presentation. Thus, our treatment is
similar in spirit to [BS21] (see also [Cam23a][Cam23b]): we use certain kinds of strict ∞-
categories as the combinatorial blueprint of weak ∞-categories. We will also use the larger
category nAlgbrd = nCatf ⊃ nCat of n-algebroids (a.k.a. flagged (∞, n)-categories) to encompass
both strict and weak categories. We begin with some definitions on the strict side.

Definition 2.1.1. A strict 0-category is a set: 0Catstr := Set. Let n ≥ 0 and suppose inductively
that the (1, 1)-category nCatstr of strict n-categories is already defined. Then a strict (n + 1)-
category is a strictly nCatstr-enriched category: (n+1)Catstr := (nCatstr)-Catstr. These categories
are presentable and the inclusion nCatstr ↪→ (n + 1)Catstr admits both left and right adjoint,
denoted by ≤n(−) (or ≤n,str(−) if there is a risk of confusion) and (−)≤n, respectively. Let
∞Catstr be the colimit

colim(0Catstr ↪→ 1Catstr ↪→ · · · ↪→ nCatstr ↪→ · · · ) ∈ PrL,

or equivalently, the limit in PrR or Ĉat along the truncations (−)≤n.

Definition 2.1.2. Let X be a strict n-category. The suspension σX is a strict (n+1)-category
with two objects {⊥,⊤} and the hom categories

HomσX(⊥,⊤) = X, HomσX(⊥,⊥) = ∗ = HomσX(⊤,⊤), HomσX(⊤,⊥) = ∅

equipped with uniquely determined compositions. A suspension has a canonical source-sink
bipointing ∗ ⊔ ∗ = σ∅ → σX. The functor σ : nCatstr → (n+ 1)Catstr∗∗ is colimit-preserving and
the right adjoint is (X,x0, x1) 7→ HomX(x0, x1).

Definition 2.1.3. Let (X,x0, x1), (Y, y0, y1) be bipointed strict ∞-categories. The wedge sum
X ∨ Y is the quotient (X ⊔ Y )/(x1 = y0) equipped with the induced bipointing (x0, y1).

Definition 2.1.4. • The n-cell Cn is the strict n-category σn(∗). We define the (reflexive)
globe category Gn as the full subcategory {Ck | 0 ≤ k ≤ n} ⊂ nCatstr and G := G∞.

• The canonically bipointed theta category Θcan
∗∗ ⊂ ∞Catstr∗∗ is the smallest full subcategory

containing the terminal object C0 and closed under suspension and wedge sum operations.
The (Joyal’s) theta category Θ ⊂ ∞Catstr is the image of Θcan

∗∗ under the forgetful functor.
Let Θn = Θ∩nCatstr. The bipointing of θ ∈ Θ will always be the canonical one, i.e., given
by the source and the sink vertices.

Example 2.1.5. Let us give a generic example of an object of Θ. The following diagram depicts
the generating cells of (σ2C0) ∨ σ(σC0 ∨ σ2C0) ∨ σC0 = C2 ⊔C0

(C2 ⊔C1
C3) ⊔C0

C0):

• • • • .

Remark 2.1.6. The full subcategory Θn ⊂ nCatstr is (already (1, 1)-categorically) dense, i.e., the
restricted Yoneda embedding nCatstr → PShSet(Θn) is fully faithful. The image is characterized
by the so-called Segal condition, a certain locality that can be stated as follows: any object θ ∈ Θ
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admits a canonical colimit representation as the maximal cells (under the inclusion) glued along
their shared boundary: colimi Cki

∼−→ θ. Now a presheaf P : Θop
n → C valued in an arbitrary

category C satisfies the Segal condition if for any θ ∈ Θn, the induced map P (θ)→ limi P (Cki) is
an equivalence. In contrast, the full subcategory Gn ⊂ nCatstr is a set of colimit generators but
not dense, i.e., the further restricted Yoneda embedding nCatstr → PShSet(Gn) is conservative
(in fact, monadic) but not fully faithful; it fails to remember compositions (cf. Remark A.0.1).

Now we describe the category nAlgbrd = nCatf of n-algebroids, a.k.a. flagged n-categories
in a few different ways. They play the role of a minimal common generalization of strict n-
categories and (∞, n)-categories:

• (iterated enrichment, [Lur09a][GH15][Hin20][Ste21]) For a given groupoid X ∈ S of ob-
jects, one can functorially assign the “X-worth-of-objects” version of the associative (non-
symmetric) operad AssocX , which agrees with Assoc when X = ∗. For example, when X
is a set, AssocX is equivalent to the multicategory with objects (x, y) for x, y ∈ X and
multimorphism

Map((x0, y1), (x1, y2), . . . , (xk−1, yk); (y0, xk)) :=

k∏
i=0

δxi,yi , k ≥ 0,

where δx,y = ∗ if x = y and ∅ if x ̸= y. For a monoidal category V, we define the category
AlgbrdX(V) := AlgAssocX (V) of V-algebroid1 with the groupoid of objects X. Roughly
speaking, A ∈ AlgbrdX(V) assigns A(x0, x1) ∈ V for a pair of points (x0, x1) ∈ X2 and a
composition morphism A(x0, x1) ⊗ · · · ⊗ A(xk−1, xk) → A(x0, xk) for (x0, . . . , xk) ∈ Xk,
k ≥ 0 in a coherently unital and associative way. We define the category of V-algebroids
as the domain of the cartesian fibration ob : Algbrd(V) → S classifying the contravariant

functor X 7→ AlgbrdX(V) ∈ Ĉat. When X is a set and V is a (1, 1)-category, we recover the
notion of stirctly V-enriched categories with the set of objectsX, so we have Algbrd(V)|Set =
V-Catstr.

Let nAlgbrd := Algbrd(. . . (Algbrd(S)) . . .) be the n-fold iteration (with the cartesian monoidal

structure). The inclusion ∗ ∅−→ S in PrL induces the inclusion S ≃ Algbrd(∗) ↪→ Algbrd(S)
(given by the initial section of the object fibration) and inductively (n − 1)Algbrd(S) ↪→
nAlgbrd(S) in PrL. We let ∞Algbrd be the colimit as n→∞.

• (Θ-presheaves, [Rez10]) Iteratedly applying the inclusion Algbrd(V)|Set ↪→ Algbrd(V) start-
ing V = ∗, we have the inclusion nCatstr ↪→ nAlgbrd. Its restriction Θn ↪→ nAlgbrd is
dense, i.e., the restricted Yoneda embedding nAlgbrd → PSh(Θn) is fully faithful. The
essential image is characterized by the same Segal condition as in 2.1.6.

• (presheaves on a suitable site) More generally, if S ⊂ nCatstr ↪→ nAlgbrd is dense, then one
can study nAlgbrd by describing the localization PSh(S)→ nAlgbrd and the combinatorics
of S. The localization admits an explicit description by cell attachments of torsion-free
complexes when S is suitable in the sense of [Cam23b, Theorem B].

• If we take the notion of n-categories (see below) as the primary one, the notion of n-
algebroids is equivalent to that of flagged n-categories of [AF18]: nAlgbrd ≃ nCatf . Flag-
ging is an extra structure of an n-category. Roughly speaking, it keeps track of the choices

1These are called categorical algebras in [GH15]. In [Ste21], where the author took the terminology, a more
general setting with categories of objects is considered. It is also worth mentioning that since the relevant
symmetric monoidal structure on V is cartesian and V contains S, V-algebroids can also be defined as simplicial

objects X : ∆op → V satisfying X0 ∈ S and the Segal condition Xn
∼−→ X1 ×X0

· · · ×X0
X1.
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of the groupoids of objects (X above) at each stage of enrichment, which is not invariant
under categorical equivalence.

Our official definition is the first one; various presheaf presentations will replace the traditional
use of models. Notice n-algebroids are “evil” as a notion of categories, taken up to isomor-
phisms instead of equivalences. This is why it contains the (1, 1)-category of strict n-categories,
constructed out of strict enrichment. We define a localization nCat ⊂ nAlgbrd by fixing this:

• The category of V-categories V-Cat ⊂ Algbrd(V) is the localization by categorical equiva-
lences, i.e., fully faithful and essentially surjective maps of algebroids. It suffices to invert
E → ∗, where E is (the base change to V of) the contractible groupoid with two objects.
Let S := 0Cat, (n+ 1)Cat := (nCat)-Cat and ∞Cat := colim(· · · ↪→ nCat ↪→ (n+ 1)Cat ↪→
· · · ) in PrL. The localization nCat ⊂ nAlgbrd are generated by the Rezk maps σk(E → ∗),
0 ≤ k < n. The local objects are also called univalent or Rezk-complete, meaning that the
prescribed groupoid of objects of the algebroid is in fact the maximal subgroupoid so it
can be recovered from the notion of equivalences internal to the algebroid.

• The Rezk maps considered as maps in PSh(Θ) yields the localization PSh(Θn)→ nAlgbrd→
nCat. This is the original context by Rezk.

• In terms of flagged n-categories, the univalent complete objects are those with the maximal
flags.

Note that a strict n-category is usually not univalent. For instance, the delooping B′Z of Z as
an algebroid with a single object ∗ is a strict 1-category, but its univalent completion BZ is the
circle S1; the automorphism of ∗ must be already in the groupoid of objects to be univalent. In
fact, a strict n-category is univalent if and only if it is gaunt, i.e., if no cell has a nonidentity
automorphism [BS21, §3]. Summarizing the discussion, we obtain the following diagram:

nGaunt nCatstr PShSet(Θn)

nCat nAlgbrd PSh(Θn)

(2.1)

Each inclusion in the diagram is right adjoint to an ω-accessible localization. In the top row are
(1, 1)-categories and are the 0-truncated parts of the bottom row. The middle (resp. left) column
is the part of the right (resp. middle) satisfying the Segal conditions (resp. univalence). In
particular, these are compactly generated with a set of compact generators Gn. The distinction
between nCat and nCatf = nAlgbrd is often irrelevant, but one is more appropriate in some
cases. It is usually clear if the discussion works in both settings or just one, but we will clarify
when necessary.

We write ≤n(−), (−)≤n for the left and right adjoints of the inclusion nAlgbrd ↪→∞Algbrd.
The right adjoint (−)≤n preserves the univalence and homotopically k-truncated objects (in
particular strictness or gauntness). We call X≤n the underlying n-algebroid (or category) or
n-(categorical) truncation (there is potential confusion with homotopical truncation, but the
relevant notion is usually clear from the context). On the other hand, the left adjoint ≤n(−)
(the n-categorical localization) does not preserve univalence nor strictness in general. For ex-
ample, BN is a gaunt 1-category freely generated by an object and an endomorphism, but
its 0-categorical localization depends on the ambient setting; in 0Algbrd = 0Cat = S we have
≤0(BN) ≃ BZ ≃ S1, whose image in 0Catstr and 0Gaunt are π0S

1 = ∗. Moreover, B2N is a gaunt
2-category but ≤1,algbrd(B2N) = B′S1 is an algebroid generated by a point and a S1 worth of



2.2. SUSPENSION 19

automorphisms, whereas ≤1,cat(B2N) = BS1 ≃ CP∞. The localization ∞Cat ↠ nCat preserves
finite products [Ste21, Proposition 3.6.13].

Note that AlgbrdX(−) preserves limits of operads and thus of symmetric monoidal categories.
Integrating the equivalence AlgbrdX(∞Algbrd) ≃ limn AlgbrdX(nAlgbrd) and AlgbrdX(∞Cat) ≃
limn AlgbrdX(nCat) over X and with some univalence consideration, one sees that ∞Algbrd and
∞Cat are fixed points of the corresponding constructions [Ste21, Remark 3.6.12]:

∞Cat ≃ (∞Cat)-Cat, ∞Algbrd ≃ Algbrd(∞Algbrd).

Moreover, [Gol23] shows that these are universal among such fixed points of enrichment in PrL.

Remark 2.1.7. There are also a few combinatorial presentations of the categories nCat and
nAlgbrd using marked simplicial and cubical sets [Ver08][CKM20]. These are convenient for
many purposes; not only are they set-valued presheaves on combinatorial shapes, but they also
handle relative categories by design. However, the representable presheaves are not fibrant.
To compute the correct mapping groupoid one must perform a fibrant replacement, so the
calculation is not as straightforward as in the n = 1 case of (naturally marked) quasicategories.
We will not rely on these combinatorial approaches because passing between those and ours is
not very straightforward. See [Lou22] for proof that the model category for n-complicial sets

indeed model nCat ∈ Ĉat.

2.2 Suspension

The suspension functor on nCatstr extends to nAlgbrd. There are many possible equivalent
definitions; we first give one based on enriched category theory.

Let Assoc{⊥,⊤} be the nonsymmetric operad for two-object algebroids. There is a morphism
of nonsymmetric operads Triv = ∆inert → Assoc{⊥,⊤} characterized by [1] 7→ (⊥,⊤), which by
definition corepresents Hom(−)(⊥,⊤) : Algbrd{⊥,⊤}(V)→ V. When V has an initial object that
is compatible with the monoidal structure, there is a left adjoint given by the operadic left Kan
extension (for nonsymmetric operads, see [GH15, §A.4]). Also notice Algbrd{⊥,⊤} ⊂ Algbrd(V)∗∗
is the fiber of the cartesian fibration ob : Algbrd(V)∗∗ → S∗∗ over the initial object, so the
inclusion admits a right adjoint that sends X to its full subalgebroid spanned by the base
objects.

Definition 2.2.1. ([Ste21, Example 3.3.6]) The (unreduced) suspension functor is the compo-
sition of the left adjoints

σ : V→ Algbrd{⊥,⊤}(V) ↪→ Algbrd(V)∗∗,

whose right adjoint is (X,x0, x1) 7→ HomX(x0, x1). In particular we have σ : nAlgbrd →
(n+ 1)Algbrd∗∗. We denote the limit case ∞Algbrd→ Algbrd(∞Algbrd)∗∗ ≃ ∞Algbrd∗∗ also by
σ.

Remark 2.2.2. (1) If V is a 1-category, σ factors through V → Algbrd(V)|Set,∗∗ = V-Catstr∗∗ .
This agrees with the suspension of strictly V-enriched categories. More generally, the
suspension functor is fully faithful and has the same description of hom objects as 2.1.2
(use the description of the operadic left Kan extension). In particular, σ on ∞Algbrd
restricts to the σ on ∞Catstr previously defined.

(2) The suspension σ lands in V-Cat∗∗ unless V = ∗. To see this, assume there is a nontrivial
map E → σX, so f : 1V → X ≃ HomσX(⊥,⊤), g : 1V → ∅ ≃ HomσX(⊤,⊥) is inverse to
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each other. Then HomσX(⊤,⊤) id⊗g⊗f−−−−−→ HomσX(⊤,⊤)⊗HomσX(⊤,⊥)⊗HomσX(⊥,⊤)→
HomσX(⊤,⊤) is an equivalence, so 1V ≃ HomσX(⊤,⊤) is a retract of ∅. It follows that
1V ≃ ∅, inducing natural equivalence idV ≃ const∅, i.e., V must be trivial.

(3) In particular, when X is an ∞-category (i.e., univalent), σX is also univalent, so we will
use the same notation for the restricted functors.

(4) We may also give a definition based on Θ-presheaves [Cam23a, Theorem 2.25]. Notice
by our definition of Θ, the suspension of Definition 2.1.2 restricts to a functor σ : Θn →
(Θcan
∗∗ ) ∩ (n+ 1)Cat∗∗. Let σ̃ : PSh(Θn)→ PSh(Θn+1)∗∗ be the unique colimit-preserving

extension. This restricts to a colimit-preserving functor σ : nAlgbrd → (n + 1)Algbrd∗∗.
The two definitions of σ given above are equivalent, as both are colimit-preserving and
agree on Θn.

Later, we will give another description using the Gray tensor product in Lemma 2.5.1.

2.3 Duality

All categories in the diagram 2.1 have the same group of automorphisms:

Proposition 2.3.1. Let C denote one of Gaunt, Catstr, Cat, Algbrd and 0 ≤ n ≤ ∞. Then
any automorphism of nC preserves the subcategories Gn, Θn and the restriction Aut(nC) →
Aut(Gn) ≃ (Z/2)n is an equivalence.

When n is finite, the proposition is [BS21, Theorem 4.13, Lemma 10.2] for nGaunt, nCat
and the same argument works for nCatstr, nAlgbrd. The key idea is to characterize the n-cell
Cn as an object of the abstract category nGaunt, nCat, etc. as the smallest generator (i.e., an
object corepresenting a conservative functor) with respect to the retract relation. This shows
that any automorphism restricts to an automorphism of Gn (which is identity on objects). Each
copy of Z/2 in Aut(Gn) ≃ (Z/2)n corresponds to flipping the cosource and the cotarget maps
s, t : Ck−1 → Ck for 0 < k ≤ n. These automorphisms uniquely extend to PSh(Θn) and fix all
relevant subcategories.

The same idea does not apply directly when n = ∞ because the infinite cell C∞ is a
proper retract of itself. However, the following lemma inductively reconstructs the subcategories
nC ⊂ ∞C from abstract category ∞C2. Consequently, any automorphism of ∞C preserves the
subcategory nC and therefore restricts to Gn for any n ≥ 0, and the proposition follows.

Lemma 2.3.2. (1) 0C ⊂ ∞C is the colimit-closure of the terminal object.

(2) Suppose we have already identified the full subcategory (n − 1)C ⊂ ∞C and in particular
the right adjoint (−)≤n−1 to the inclusion. Let nC′ ⊂ ∞C be the full subcategory spanned
by the objects X satsifying the following condition:

for any (homotopically) 0-truncated object Y ∈ (∞C)≤0, the counit Y ≤n−1 → Y
induces a monomorphism Map(Y,X)→ Map(Y ≤n−1, X) in S.

Then nC is the colimit-closure of nC′ ⊂ ∞C.

Proof. The first point is clear. For the second point, it suffices to proveGn ⊂ nC′ ⊂ nC. First, we
show Gn ⊂ nC′. Consider the (−1)-truncation functor Set→ {∅, ∗} in PrL. Since it is a product-
preserving localization, it induces the underlying n-preordered set functor Set(-Catstr)n → {∅, ∗}(-Catstr)n.

2This idea is based on the post [Cama] characterizing the posets inside hoCat(1,1).
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Note that the latter contains Gn. For any X ∈ {∅, ∗}(-Catstr)n, the map (sn−1, tn−1) : Xn →
Xn−1 × Xn−1 is mono and X≥n is constant. It follows that for any strict ∞-category Y , the

map MapPShSet(G)(Y•, X•) → MapPShSet(G)(Y
≤n−1
• , X•) is a monomorphism. Since ∞Catstr →

PShSet(G) is conservative, Map∞Catstr(Y,X)→ Map∞Cat(Y
≤n−1, X) is also a monomorphism.

Next assume X ∈ nC′. We must show that any k-cell of X is degenerate for k > n, i.e., the
map Map(Ck, X) → Map(Ck+1, X) induced by the projection Ck+1 ↠ Ck is an isomorphism.
We claim that the following conditions are equivalent when k ≥ n:

(1) The map Map(Ck, X)→ Map(∂Ck, X) induced by ∂Ck ↪→ Ck is mono.

(2) The map Map(Ck, X)→ Map(∂Ck+1, X) induced by ∂Ck+1 ↠ Ck is an isomorphism.

(3) The maps Map(Ck, X)→ Map(Ck+1, X)→ Map(∂Ck+1, X) induced by ∂Ck+1 ↪→ Ck+1 ↠
Ck are isomorphisms.

(1) and (2) are equivalent because the second map is the diagonal of the first. (2) and (3) are
equivalent because the maps of (3) are mono by assumption: they are maps between subobjects
of Map(∂Cn, X) because (∂Ck+1)

≤n−1 = (Ck+1)
≤n−1 = (Ck)

≤n−1 = ∂Cn when k ≥ n. Now,
again by assumption, (1) is true for k = n. By induction using the equivalence, we see that (3)
is true for all k ≥ n, so we have X ∈ nC.

Remark 2.3.3. The category nGaunt′ is the category of so-called n-posets; by convention, a
(−1)-poset is the terminal object, and n-poset are those enriched in (n− 1)-posets.

Definition 2.3.4. For a function τ : Z≥1 → Z/2, we let Dτ denote the corresponding involution
of the categories of n-categories. That is, if we let sk, tk : Ck → Ck−1 be the k-th co-source and
co-target map, Dτ is characterized by

Dτ (sk) =

{
sk if τ(k) = 0,

tk if τ(k) = 1.

One can think of τ as the indicator function of the dimensions of the cells that get flipped.

The following copy of Z/2 × Z/2 ⊂ Aut(∞Algbrd) is of dimension-independent importance
(one reason is Proposition 2.4.17; the proof does not work for a general τ):

Definition 2.3.5. The odd dual (resp. even dual) flips s, t : Ck−1 → Ck for k odd (resp. even),
i.e., they are the duality involution Dτ when τ is the indicator function of the odd (resp. even)
numbers. We denote the odd and even duals by (−)op and (−)co, respectively. The total dual
flips the cells of all dimensions, i.e. (−)coop, which we denote by (−)◦ or D.

2.4 The cubes and the Gray tensor product

The (lax) Gray tensor product is a monoidal structure on∞Algbrd and its various localizations.
It differs from the cartesian product in a few important ways:

• When X,Y are m, n-categories respectively, the Gray tensor product X ⊗Y is a (m+n)-
category while the cartesian product X × Y is a max{m,n}-category.

• The cartesian product is symmetric, but the Gray tensor product is not. It behaves like a
star-algebra with respect to the odd (or even) dual.
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• Both the cartesian product and Gray tensor product are closed with the terminal unit.
However, the Gray internal hom classifies the functor category with (op)lax natural trans-
formations, while the cartesian internal hom classifies the functor category with strong
natural transformations.

Remark 2.4.1. In the classical 2-categorical literature, sometimes the Gray tensor product refers
to the pseudo-Gray tensor product (as opposed to the lax or oplax Gray tensor product). We
will never use this language because the pseudo-Gray tensor product is just a cartesian product
in our natively homotopical setting.

We will freely use Steiner’s theory (see Appendix A for a review). Here, let us only recall the
existence of an adjunction

∞Catstr adCh
λ

ν
⊥

that restricts to an equivalence ∞GauntSte ≃ adChSte of the full subcategories of strong Steiner
objects of the both sides (for ∞Catstr side they are automatically gaunt). adCh is the cat-
egory of augmented directed complexes (homologically-graded augmented chain complex with
an additional data of positivity submonoid). Strong-Steinerness is a reasonably checkable “free
and loop-free” condition and is satisfied by many simple and combinatorially important gaunt
∞-categories (an important non-example is the walking adjunction category Adj, however).
Steiner’s theory gives a neat way to define the (lax) Gray tensor product of strict ∞-categories;
it corresponds to the tensor product of chain complexes. We endow the category adCh with a
monoidal structure by the (reversed) Koszul sign rule (i.e., ∂x⊗ y = (−1)deg(y)∂x⊗ y+x⊗∂y).
One can check that adChSte ⊂ adCh is a monoidal subcategory.

Definition 2.4.2. (1) There exists a unique biclosed monoidal structure, called the (strict)
Gray tensor product on ∞Catstr such that adChSte ≃ ∞GauntSte ↪→∞Catstr promotes to
a monoidal functor.

(2) The cube category □□ ⊂ ∞GauntSte ⊂ ∞Catstr is the monoidal full subcategory generated
by the interval □1 := C1. The objects of □□ are the n-cubes □n := (□1)⊗n ∈ nGaunt.

Remark 2.4.3. Campion [Cam22] shows that Θ is contained in the idempotent completion of
□□ (also see Corollary A.3.6 for another proof with the same idea). In particular, □□ ⊂ ∞Catstr

is dense, i.e., the left Kan extension PShSet(□□) → ∞Catstr is a localization. This shows the
uniqueness part of (1); even stronger, it is characterized as the unique biclosed monoidal struc-
ture promoting □□ ↪→∞Catstr to a monoidal functor.

Example 2.4.4. The n-cube □n, or a strong Steiner category in general, is an example of
computads (a.k.a. polygraphs). It is the relevant notion of the freeness for strict n-categories,
defined similarly to the notion of CW-complexes Definition A.1.6. By definition, we have □n =

λ

(
(· · · → 0→ ?Z (1,−1)−−−−→ 0Z⊕ 1Z)⊗n

)
. An polygraphic basis element (i.e., an atomic cell) of

□n is a string of the letters 0, 1, ?. The number of ? is the dimension of the cell. The differential
∂(?) = 1 − 0 together with the Koszul sign rule describes what the domain and the codomain
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of these cells are. The following depicts the atomic cells of the first three cubes □1,□2,□3:

0 1,

00 01

10 11,

001 001

000 011 000 011

010 101

100 111 100 111.

110 110

⇛

Remark 2.4.5. A monoidal structure ⊗′ on □□ such that □n ⊗′ □m = □n+m is completely
characterized by the bifunctor ⊗′ : □□ × □□ → □□ ; since □□ is a 0-truncated object of Cat (see
Remark A.3.4), any A∞-structure is strictly associative and associativity is a property of the
underlying A2-structure.

Next, we explain the Gray tensor product for weak categories.

Theorem 2.4.6 ([Cam23b]). There exist a unique closed E1-monoidal structure, called the
Gray tensor product on ∞Algbrd promoting the inclusion ∞GauntSte ↪→ ∞Algbrd to a strong
monoidal functor. Moreover, the reflective subcategories ∞Cat, ∞Catstr, and nAlgbrd are all
exponential ideals (see the remark below). In particular, the tensor product localizes to these
categories and their intersections.

Definition 2.4.7. We will denote the Gray tensor product of ∞Algbrd and ∞Cat by ⊗ and
the left internal hom by [−,−]; that is, we have a natural equivalence Map∞Cat(X, [Y,Z]) ≃
Map∞Cat(Y ⊗ X,Z) and similarly for ∞Algbrd. Beware that X ⊗ Y can be ambiguous up
to univalent completion when X,Y are ∞-categories; it is usually clear from the context if
the tensor product is localized or not (there is no such ambiguity for internal hom). We will
occasionally use JX,Y K to denote the right internal hom, i.e., Map(Z, JX,Y K) ≃ Map(Z⊗X,Y ).

Remark 2.4.8. By definition, a full subcategory C ⊂ ∞Algbrd is an exponential ideal if for any
Y ∈ C and X ∈ ∞Algbrd, we have [X,Y ], JX,Y K ∈ C. When L :∞Algbrd→ C is a localization,
this is precisely when L-equivalences are preserved by tensoring objects from both sides, or
when there is a (necessarily unique) monoidal structure on C promoting L to a monoidal functor
[Lur17, Proposition 2.2.1.9]. If we denote the localized tensor product by X ⊗L Y ≃ L(X ⊗ Y ),
there is a canonical comparison map X⊗Y → X⊗LY but this is not necessarily an equivalence.

Remark 2.4.9. Because □□ ⊂ ∞Algbrd is dense, promoting this inclusion to a strong monoidal
functor is enough to characterize the biclosed monoidal structure on∞Algbrd; if it exists, it must
be induced from the localization PSh(□□) → ∞Algbrd, where PSh(□□) is endowed with the Day
convolution monoidal structure. Similar characterization is also true for various localizations.
Since □□ is a set of compact generators, the Gray tensor product is compactly generated, i.e.,
∞Cat⊗ ∈ Alg(PrLω).

Remark 2.4.10. The theorem in particular states that the weak and strict tensor product agrees
on the strong Steiner categories, i.e., the comparison map X ⊗ Y → τ≤0(X ⊗ Y ) for X,Y ∈
∞Algbrd (or ∞Cat) is an equivalence when X,Y are strong Steiner. The monoidal category
∞GauntSte in the theorem can be replaced by a larger category of torsion-free complexes. The
author does not know if the gauntness is preserved in general by the Gray tensor product.
However, Loubaton [Lou23, Theorem 4.3.3.26] shows that the tensor product with the cubes
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preserves gauntness3.

Remark 2.4.11. The Gray tensor product is additive on category levels, i.e., if X, Y are k,
l-categories respectively, then X⊗Y is an (k+ l)-category. To see this, consider the subcategory
C of pairs (X,Y ) ∈ ∞Cat ⊗∞Cat (beware the use of ⊗ for presentable categories) such that
X ⊗ Y is an n-category. C is closed under colimits and contains (□k,□l) for k + l ≤ n, so it
contains

⋃
k+l≤n kCat⊗ lCat.

Remark 2.4.12. [Lou22], [Lou23] also shows the existence of the Gray tensor product by showing
the equivalence between∞-categories and complicial sets and allowing one to transfer the Gray
tensor product of complicial sets [VRO23].

The Gray tensor product is semicartesian, that is, its unit object is terminal. In this case,
there is a natural transformation X ⊗ Y → X × Y . The following lemma shows that this
extends to a lax monoidal functor. This fact seems standard, but we include the proof because
the author does not know a proof in the literature:

Lemma 2.4.13. Let C⊗ → ∆op be a semicartesian monoidal category. Then there is a lax
monoidal functor C× → C⊗ from the cartesian monoidal structure whose underlying functor is
idC.

Proof. One can construct the opposite monoidal category (Cop)⊗ by postcomposing the involu-
tion (−)op : Cat→ Cat to the Segal object ∆op → Cat it classifies. Then C⊗ is semicartesian if
and only if (Cop)⊗ is unital in the sense of [Lur17, Definition 2.3.1.1]. Let (−)sym : Mon(Cat)→
CMon(Cat) be the left adjoint to the forgetful functor. Then constructing a lax monoidal func-
tor C× → C⊗ which is the identity on the underlying categories is equivalent to constructing
a lax monoidal functor ((Cop)⊗)sym → (Cop)⨿ which is the identity on underlying categories.
Now [Lur17, Proposition 2.4.3.9] says that a lax monoidal functor from an unital operad to a
cocartesian operad is determined by the underlying functor.

Remark 2.4.14. Because⊗ is closed and semicartesian, the comparison morphismX⊗Y → X×Y
is an isomorphism when X or Y is a 0-category. By adjunction, one sees that [X,Y ]≤0 ≃
Map∞Cat(X,Y ) ≃ JX,Y K≤0.

Remark 2.4.15. In particular, the identity functor promotes to a lax monoidal functor (∞Algbrd,×)→
(∞Algbrd,⊗) and (∞Cat,×) → (∞Cat,⊗). This induces a fully faithful change-of-enrichment
functor Algbrd(∞Algbrd)→ Algbrd(∞Algbrd⊗) and ι :∞Cat ≃ (∞Cat)-Cat→ (∞Cat⊗)-Cat.

Definition 2.4.16. A Gray category is a category enriched in the Gray tensor product of∞Cat,
i.e., an object of ∞Cat⊗-Cat.

We close the section by showing that some of the duality functors interact well with the
Gray tensor product.

Proposition 2.4.17. The total dual functor promotes to a monoidal endofunctor ∞Algbrd⊗ →
∞Algbrd⊗. The odd and even dual functors promote to antimonoidal endofunctors∞Algbrd⊗ →
∞Algbrd⊗

oplax

. Similar statements are true for ∞Cat, ∞Catstr, ∞Gaunt.

Proof. By the universal property of the Gray tensor product, it suffices to show the following:

(1) The total dual (−)◦ restricts to ∞GauntSte and promotes to a monoidal functor.

3Technically speaking, the theorem is proven for the monoidal structure transferred from Verity’s monoidal
structure on complicial sets, which is previously not known to be equivalent to Campion’s monoidal structure.
However, the theorem in particular proves that the transferred monoidal structure agrees with the strict one on
□□ , so by the characterization, the equivalence of the two monoidal structures follows.
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(2) The odd and even dual (−)op, (−)co restrict to ∞GauntSte and promote to antimonoidal
functors.

These follow from the corresponding claims in the category adCh (see Appendix A.2). The part
“restricts to” follows from the fact that strong Steiner-ness is preserved by the duality functors.
To check the monoidal property in the first claim, note that (A ⊗ B)◦ and A◦ ⊗ B◦ have the
identical underlying graded abelian group. The identification clearly respects the augmentation
and the positive parts. For differentials, observe

∂(A⊗B)◦(a⊗ b) = −∂A⊗B(a⊗ b) = −((−1)deg b(∂Aa)⊗ b+ a⊗ (∂Bb))

= (−1)deg b(∂A
◦
a)⊗ b+ a⊗ (∂B

◦
b) = ∂A

◦⊗B◦
(a⊗ b).

The proof of the second claim is similar.

2.5 The Gray suspension is the suspension

In this section, we prove the key lemma that connects the Gray tensor product and the self-
enrichment ∞Algbrd ≃ Algbrd(∞Algbrd). This will feed into Proposition 3.1.9 and ultimately
become one of the main ingredients in the construction of the tensor product of categorical
spectra. Another important byproduct is the pushout formula for (σX)⊗□1, see Corollary 2.5.3.

Lemma 2.5.1. There are functors

P, P ◦ :∞Algbrd→ Fun(∆1 ×∆1,∞Algbrd)

whose values P (X), P ◦(X) are pushout squares with the following specification (only the bottom
arrows and the 2-cells are not predetermined):

∂□1 ⊗X ∂□1

□1 ⊗X σX,

∂□1⊗(X→∗)
X ⊗ ∂□1 ∂□1

X ⊗□1 σ(X◦).

(2.2)

Remark 2.5.2. The diagrams restrict to X ∈ ∞Cat,∞Catstr,Gaunt. For the strict categories,
we could run the same proof with the strict tensor product, but by Remark 2.4.10 this coincides
with the restriction of the lemma. The left pushout formula is [Cam23b, Lemma 3.8] (based
on the strict ∞-category case [AM20, Cor. B.6.6]). The right pushout formula seems new and
requires some care regarding the duality introduced, so we spell out the proof in great detail.

Proof. We first analyze P and P ◦ assuming such functors exist. First, P (∅), P ◦(∅) both must
be the identity square

∅ ∂□1

∅ ∂□1,

so P , P ◦ must lift to functors ∞Algbrd → Fun(∆1 × ∆1,∞Algbrd)P (∅)/. These are neces-
sarily colimit-preserving because the colimit in the codomain is computed componentwise (in
each coslice category)4. Let Funpo(∆1 ×∆1,∞Algbrd)P (∅)/ denote the (colimit-closed) full sub-
category of the codomain consisting of pushout squares. Notice that, once we have functors

4Recall that the colimit of p : X → Yy/ is (almost by definition) the colimit of the corresponding cone
p̄ : X◁ → Y .
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P (◦)|□□ : □□ → Funpo(∆1 × ∆1,∞Algbrd)P (∅)/ with the components as specified, their unique
colimit-preserving extensions to PSh(□□) automatically descend to ∞Algbrd and meet the spec-
ifications:

Fun(□□ ,Fun(∆1 ×∆1,∞Algbrd)P (∅)/) ≃ LFun(PSh(□□),Fun(∆1 ×∆1,∞Algbrd)P (∅)/)

←↩ LFun(∞Algbrd,Fun(∆1 ×∆1,∞Algbrd)P (∅)/),

They descend to∞Algbrd because each component of the square does (which is a consequence of
the existence of Gray tensor product), and the extended functor lands in pushout squares if the
original functor does. We provide P |□□ and P ◦|□□ in two steps: (1) construct the commutative
squares valued in ∞GauntSte ≃ adChSte and (2) check that they are pushouts in ∞Algbrd. Note
that the (weak) tensor product of objects in ∞GauntSte, as well as the suspension and the total
dual, agrees with the strict notion.

(1) Since our definition of the Gray tensor product involves Steiner theory, so does the con-
struction of the squares P (□n), P ◦(□n). We define the functors P̃ , P̃ ◦ : adChSte →
Fun(∆1 ×∆1, adChSte) with

P̃ (A) =

λ(∂□1)⊗A λ(∂□1)

λ□1 ⊗A σ(A),

P̃ ◦(A) =

A⊗ λ(∂□1) λ(∂□1)

A⊗ λ□1 σ(A◦).

The two has identical commutative squares of underlying graded Z-modules with the

bottom map (under the notation λ□1 = (eZ
(−1

1 )−−−→ ⊥Z⊕⊤Z))

Aq ⊗⊥Z⊕Aq ⊗⊤Z⊕Aq−1 ⊗ eZ
(0,0,1)−−−−→ Aq−1 (q > 0),

A0 ⊗⊥Z⊕A0 ⊗⊤Z
(ε,ε)−−−→ ⊥Z⊕⊥Z (q = 0).

In both diagrams, it is straightforward to check that it defines a map of augmented directed
complexes functorial in A, so they indeed define (strictly) commutative squares P̃ , P̃ ◦ :
adChSte → Fun(∆1 × ∆1, adChSte). Through the equivalence GauntSte ≃ adChSte and
restricting to □□ ∪ {∅}, we obtain P (◦) : □□ → Fun(∆1 × ∆1,GauntSte)P (∅)/ ⊂ Fun(∆1 ×
∆1,∞Algbrd)P (∅)/ (and its colimit-extension to ∞Algbrd).

(2) It remains to show that P (◦)(□n) are pushout squares. We say X ∈ ∞Algbrd is good
(resp.◦-good) if P (X) (resp. P ◦(X)) is a pushout. The terminal category □0 is clearly
(◦-)good, so it suffices to show that if a strong Steiner ∞-category X is (◦-)good, then so
is X ⊗□1 (resp. □1 ⊗X). By assumption that P (◦)(X) is a pushout (which is preserved
by tensoring □1), we have the following factorizations of P (X ⊗□1) and P ◦(□1 ⊗X):

∂□1 ⊗X ⊗□1 ∂□1 ⊗□1 ∂□1

□1 ⊗X ⊗□1 (σX)⊗□1 σ(X ⊗□1),
⌜

□1 ⊗X ⊗ ∂□1 □1 ⊗ ∂□1 ∂□1

□1 ⊗X ⊗□1 □1 ⊗ σ(X◦) σ((□1 ⊗X)◦).
⌜
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The composite rectangles are pushouts if and only if the right squares are. To ease the
notation, we precompose the right diagram with the total dual so that X◦, (□1 ⊗ X)◦

are replaced with X, (□1 ⊗ X◦)◦ ≃ (□1)◦ ⊗ X. Here (□1)◦ is isomorphic to □1, but it
indicates that if we use the labeling of the vertices compatible with the other entries of the
diagram, the 1-morphism goes from 1 to 0. Factor the right squares into (a) + (b) of the
next diagrams by factoring the left inclusions as follows (0, 1 (resp. ⊥,⊤) are the source
and the sink of □1 (resp. σX)):

∂□1 ⊗□1 ↪→
(
(σX ⊗ {0}) ∨ ({⊤} ⊗□1)

)
⊔
(
({⊥} ⊗□1) ∨ (σX ⊗ {1})

)
→ (σX)⊗□1,

□1 ⊗ ∂□1 ↪→
(
(□1 ⊗ {⊥}) ∨ ({1} ⊗ σX)

)
⊔
(
({0} ⊗ σX)⊗ (□1 ⊗ {⊤})

)
→ □1 ⊗ (σX).

(note that these wedge sums are both strict and weak: see [Cam23a, Theorem 2.31]):

∂□1 ⊗□1 ∗ ⊔ ∗

σX ⊔ σX σX ∨□1 ⊔□1 ∨ σX σX ⊔ σX

σ(X ⊗□1) (σX)⊗□1 σ(X ⊗□1)

(a)

(c) (b)

□1 ⊗ ∂□1 ∗ ⊔ ∗

σX ⊔ σX σX ∨□1 ⊔□1 ∨ σX σX ⊔ σX

σ((□1)◦ ⊗X) □1 ⊗ σX σ((□1)◦ ⊗X)

(a)

(c) (b)

Since (a) is a pushout, it suffices to show that there exist pushout squares (c) such that the
horizontal compositions of (b) + (c) are the identities. Heuristically, the horizontal maps
of (c) are the maps from suspensions that pick up the “long” hom of the wedge sums and
the “diagonal” hom of the tensor product. To construct these maps rigorously, one can
write down the sections of (b) in adCh; there are obvious sections of graded abelian groups
realizing the above heuristics (which are identities in degrees greater than 1) and one just
need to check that those maps commute with differentials (which is not completely trivial
only up to degree 1).

To show that the squares (c) are pushouts, it suffices to show that these are in fact
pushouts in PSh(Θ), i.e., for θ ∈ Θ, the squares Map(θ, (c)) are pushout in S (these
squares are Set-valued, however). Separating the cases based on the map on vertices, it
reduces to checking that Hom∗∗(σθ

′, σ(X ⊗□1))→ Hom∗∗(σθ
′, (σX)⊗□1) is a bijection;

since G is colimit-generating, we may assume θ′ = Cn ∈ G. In this case, one can explicitly
check (in Steiner complexes side) that any bipointed map Cn → (σX) ⊗ □1 must factor
through σ(Cn−1 → X ⊗□1).

By colimit-extending diagrams (c) in the same fashion as the first part of the proof (i.e., in
the category under the value of X = ∅), we get the following pushout formula as a byproduct:
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Corollary 2.5.3. There are the following pushout squares in ∞Algbrd, functorial in X ∈
∞Algbrd:

σX ⊔ σX σX ∨□1 ⊔□1 ∨ σX

σ(X ⊗□1) (σX)⊗□1,

σX ⊔ σX σX ∨□1 ⊔□1 ∨ σX

σ((□1)◦ ⊗X) □1 ⊗ (σX)

where the top arrows pick up the hom category between the source and the sink objects of the
wedge sum and the bottom arrows pick up the “diagonal” hom category.

For later use, we record a generalization of the lemma for higher suspensions and a conse-
quence on iterated hom categories.

Corollary 2.5.4. Let k ≥ 0 be an integer. There is the following pushout square functorial in
X ∈ ∞Algbrd.

∂Ck ⊗X ∂Ck

Ck ⊗X σkX
⌜

Proof. The case k = 0 is obvious and k = 1 is the first diagram of the lemma. We proceed by
induction, so assume the conclusion for some k ≥ 1. Plugging X = σY = (□1⊗Y )∪∂□1⊗Y ∂□1

into the induction hypothesis, we see that σk+1Y is the colimit of the following punctured cube
diagram:

∂Ck ⊗ ∂□1 ∂Ck

∂Ck ⊗ ∂□1 ⊗ Y ∂Ck ⊗□1 ⊗ Y

Ck ⊗ ∂□1 σk+1Y

Ck ⊗ ∂□1 ⊗ Y Ck ⊗□1 ⊗ Y
The pushout of the span in the back face is (Ck ⊔Ck)∪(∂Ck⊔∂Ck) ∂Ck ≃ ∂Ck+1, so we have the
following pushout diagram:(

(Ck ⊗ ∂□1) ∪(∂Ck⊗∂□1) (∂Ck ⊗□1)
)
⊗ Y ∂Ck+1

Ck ⊗□1 ⊗ Y σk+1Y

The top arrow factors through ∂Ck+1 ⊗ Y by pushing out along (∂Ck ⊗□1 ↠ ∂Ck)⊗ Y (note
that the spans in the front and the back face is, up to the factor of Y , only differs by the □1 in
the entry ∂Ck ⊗ □1 ⊗ Y ). Since (Ck ⊗ □1) ∪∂Ck⊗□1 ∂Ck ≃ Ck+1, the pushout along the same
map factors the bottom map as Ck ⊗□1 ⊗ Y → Ck+1 ⊗ Y → σk+1Y .

Since σ preserves contractible colimits, for anyA ∈ ∞Algbrd, we have an adjunction ∞AlgbrdA/ ∞Algbrdσ(A)/

σ

ω
⊥ .

By iteration we have

σk : ∞Algbrd ∞Algbrd∂C1/ · · · ∞Algbrd∂Ck/

σ

Hom
⊥

σ

Hom
⊥

σ

Hom
⊥ : ωk.
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For a parallel pair of (k − 1)-morphisms (sk−1, tk−1) : ∂Ck → X, let X(sk−1, tk−1) denote the
mapping category ωk(X, sk−1, tk−1). By adjunction, we have the following pullback square:

Hom(Y,X(sk−1, tk−1) Hom(σkY,X)

∗ Hom(∂Ck, X)

.

Composing with the pullback square of the corollary (after Hom(−, X)), we obtain the following:

Corollary 2.5.5. Let X ∈ ∞Algbrd and (sk−1, tk−1) : ∂Ck → X be parallel (k− 1)-morphisms.
Then we have the pullback square

X(sk−1, tk−1) [Ck, X]

∗ [∂Ck, X].

⌟

(sk−1,tk−1)
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Chapter 3

Categorical spectra

In this chapter, we introduce our main object of study: categorical spectra. We will define the
category CatSp of categorical spectra in a completely analogous way to that of spectra, i.e., the
limit along the sequence of the loop endofunctors on ∞Cat∗, instead of S∗:

CatSp := lim(· · · Ω−→∞Cat∗
Ω−→∞Cat∗).

Roughly speaking, Ω takes (X,x) to the endomorphism category EndX(x) of the basepoint. In
Section 3.1, we start by studying the loop-suspension adjunction Σ ⊣ Ω for pointed∞-categories.
This is the reduced version of σ ⊣ Hom from the previous chapter, i.e., ΣX = (σX)/(σ∗). Unlike
in the classical algebraic topology, Σ is not equivalent to σ; the latter is simpler because of the
absence of morphisms in one direction. Collapsing the basepoints breaks this feature and in
particular, does not preserve gauntness in general. In other words, it is essentially an operation
for a weak ∞-categories. As before, we first define the suspension using enriched category
theory and connect it to the Gray tensor product, observing that the loop-hom adjunction is
equivalent to the tensor-hom adjunction for S⃗1 for the Gray smah product, where S⃗1 is the
directed circle, the category freely generated by a loop on a basepoint. Analogously to May’s
recognition principle, the delooping hypothesis states that the n-fold loop construction provides
an equivalence between En-monoidal∞-categories and n-connective ∞-categories, i.e., those∞-
categories trivial up through (n−1)-th categorical level. This will be made precise in Section 3.2.

We will then define categorical spectra in Section 3.3. By a similar argument for infinite
loop objects, we will show that it naturally fills the following pullback square:

CMongp(S) Sp

CMon(∞Cat) CatSp.

B∞

B∞

The left column can be thought of as the connective part of the right. We will see that the
horizontal arrows have both left and right adjoints: the right adjoint takes the maximal Picard
subgroupoid and the left adjoint inverts all the stable cells. These offer ways to extract infor-
mation from categorical spectra in a classical form. Iteration of categorification often provides
an example of categorical spectra. We try to give a unified description in Section 3.4. We
end the chapter by studying finiteness properties of categorical spectra in Section 3.5. We can
make analogous definitions to various finiteness properties of spectra. They are all equivalent
for spectra, but at this point, we will only treat the formal implications between them.

31
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This chapter largely overlaps [Ste21, Chapter 13]. We refer the reader there for some detail
and different perspectives.

3.1 Loop and suspension

Let V be a presentable cartesian closed category (whose default monoidal structure is the carte-

sian one). We denote the category of pointed objects ∗ x−→ X (which we write (X,x), x ∈ X) by
V∗. Notice V∗ := V∗/ ≃ AlgE0

(V) ≃ S∗⊗V. We will omit the basepoint from the notation when
there is no risk of confusion.

Definition 3.1.1. Notice the underlying groupoid functor ob : Algbrd(V)∗ ≃ Algbrd(V)×SS∗ →
S∗ is a cartesian fibration. The algebroid delooping functor is the inclusion of the fiber over the
initial object ∗:

B′V : Mon(V) ≃ Alg(V) = Algbrd∗(V) ↪→ Algbrd(V)∗,

and the delooping functor is its univalent completion BV : Mon(V)
B′

V−−→ Algbrd(V)∗
Luni

−−−→ V-Cat∗.
The loop functor is their right adjoints (i.e., the cartesian transport of ob along the basepoint
map ∗ → X) ΩV : Algbrd(V)∗ → Alg(V) or its restriction to V-Cat∗. We will omit V in the
subscript when it is not confusing.

Definition 3.1.2. By abuse of notation, we continue to denote by ΩV the functor that returns
the underlying pointed (resp. unpointed) object of the loop:

(V-Cat∗ ↪→)Algbrd(V)∗
ΩV−−→ Alg(V)→ AlgE0

(V) ≃ V∗(→ V).

These functors have left adjoints, called the suspension, given by the (partial) composite of(
V

(−)+−−−→
)
V∗

FreeE1/E0−−−−−−→ Alg(V)
B′

−→ Algbrd(V)∗
( Luni

−−−→ V-Cat∗
)
;

we will use the notation Σ′ = B′ ◦ Free, Σ = B ◦ Free and Σ′+, Σ+ for their unpointed versions.

Remark 3.1.3. ΩV : V-Cat∗ → Alg(V)∗ depends functorially on the monoidal category V via
change-of-enrichment [Ste21, Remark 13.1.7]. The loop of a pointed V-algebroid (X,x) is the
object of endomorphisms EndX(x) endowed with the monoid structure by composition (so the
basepoint is idx). In particular, the loop functor ΩV : Algbrd(V)∗ → Alg(V)∗ inverts fully faithful
morphisms so it factors through the univalent completion Algbrd(V)∗ → V-Cat∗. It follows that
B is fully faithful: the unit id → ΩB ≃ ΩLuniB′ ≃ ΩB′ is an equivalence because B′ is fully
faithful.

The following lemma relates the reduced and unreduced suspension:

Lemma 3.1.4. The composite V∗
σ−→ Algbrd(V)σ(∗)/

cofib−−−→ Algbrd(V)∗
( Luni

−−−→ V-Cat∗
)
, where the

second arrow is the cobase change along σ(∗) → ∗, is equivalent to the reduced suspension Σ′

(resp. Σ).

Proof. Observe that the right adjoint is given by Algbrd(V)∗ → Algbrd(V)σ(∗)/
Hom(−)(∗,∗)−−−−−−−−→ V∗

which is equivalent to ΩV.

In other words, we have a cofiber sequence σ(∗) σ(x)−−−→ σ(X) → Σ(X). Now we restrict
attention to the most interesting case when V =∞Cat or ∞Algbrd. We let Σ (resp. Σ′) denote

the endofunctor ∞Cat∗
Σ∞Cat−−−−→ (∞Cat)-Cat∗ ≃ ∞Cat∗ (resp. its algebroid version) and similarly

for Ω :∞Algbrd∗ → Mon(∞Algbrd).
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Remark 3.1.5. The loop functor on ∞Algbrd∗ restricts to ∞Cat∗ → ∞Cat∗ and S∗ = 0Cat∗ →
S∗. The latter agrees with the classical loop that takes the groupoid of automorphisms of the
basepoint. In contrast, the suspension functor Σ : ∞Cat∗ → ∞Cat∗ does not restrict to the
classical suspension functor S∗ → S∗. Instead, the classical suspension is the delooping of the
group completion of the free monoid.

Now we combine the above lemma and Lemma 2.5.1 to deduce the formula relating the Gray
smash product (which we define now) and the suspension. This will later be the first level of

the half-central structure of S⃗1.

Definition 3.1.6. Since S → S∗ is an idempotent algebra (with the smash product) in PrL,
the base-change promotes to a (symmetric) monoidal localization S∗ ⊗ (−) : PrL → PrL and in
particular a functor (−)∗ : Alg(PrL)→ Alg(PrL), sending a presentably monoidal category to the
category of its pointed objects with “smashed” monoidal product. Applying this construction to
∞Algbrd and∞Cat with the Gray tensor product, we get the Gray smash product on the pointed
objects, which we will denote by ?. Explicitly, we haveX?Y ≃ cofib(X⊗∗⊔∗⊗∗∗⊗Y → X⊗Y ).

Definition 3.1.7. Let S⃗1 = BN = Σ+(∗) (note that N is the free E1 algebra on a point). This

is the directed circle. Also let S⃗n := (S⃗1)?n be the directed n-sphere.

Remark 3.1.8. The directed circle S⃗1 is a gaunt 1-category and it is the free category on the
graph ∆1/∂∆1. In contrast, S⃗n is not strict for n > 1 because by the next proposition S⃗n =
ΣnS0 = Bn FreeEn(∗) and FreeEn(∗) ≃

⊔
k≥0(Confk(Rn)hΣk

is not a 0-truncated homotopy type.

Proposition 3.1.9. There exist canonical identifications functorial in X:

ΣX ≃ S⃗1 ?X, X ? S⃗1 ≃ ΣX◦.

In particular, this provides a natural isomorphism

τX : S⃗1 ?X ≃ ΣX ≃ X◦ ? S⃗1.

Proof. Consider the following diagram:

∗ ⊗ ∗ ∗ ⊗ ∂□1 ∂□1

X ⊗ ∗ X ⊗ ∂□1 ∂□1

∗ ⊗ S⃗1 ∗ ⊗□1 S∗

X ⊗ S⃗1 X ⊗□1 SX◦

(1
)

(2
)

(3
)

All the arrows from back to front are induced by the basepoint ∗ → X. The front-right and
the back-right faces are the pushout diagrams of Lemma 2.5.1, whereas front-left and back-left
faces are pushouts by S⃗1 = □1/∂□1. Since all the faces in front and back are pushouts, we have
the induced equivalences on the total cofibers

S⃗1 ?X ≃ cofib(1)← cofib(2)→ cofib(3) ≃ ΣX◦.

The other equivalence ΣX ≃ X?S⃗1 follows from the other pushout diagram of Lemma 2.5.1.
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Remark 3.1.10. The first equivalence the proposition is equivalent to that the suspension∞Cat∗ →
∞Cat∗ is a morphism in RMod∞Cat?∗

(PrL). The similar statement for the usual smash product
instead of the Gray smash product fails fundamentally: if X is an n-category for n ≥ 1, then
S⃗1 ∧X is still an n-category, while ΣX is an (n+ 1)-category.

Remark 3.1.11. The loop Ω : ∞Cat∗ → ∞Cat∗ preserves filtered colimits, or equivalently,
the suspension Σ preserves compact objects. It follows from the fact that the filtered colimit
commutes with taking the hom object in the enriched categories but also from the pushout
formula and Remark 2.4.9.

3.2 Connectivity of ∞-categories and the delooping hy-
pothesis

In the literature, the delooping hypothesis is often phrased as “an (n+k)-category with a single
0, 1, · · · , (k − 1)-cells is equivalent to a Ek-monoidal n-category;” this is literally true in the
flagged/algebroid setting, but such “k-connective (n+ k)-algebroids” are usually not univalent.
The goal of this section is to give a precise treatment of the notion of connectivity in the univalent
setting.

Let Map(X,Y ) denote Hom(X,Y )≤0 ≃ [X,Y ]≤0 (so the cartesian and Gray enrichment are
the same after 0-truncation). Recall that a functor f : X → Y in ∞Cat is essentially surjective
if the map f≤0 : X≤0 → Y ≤0 is an effective epimorphism, i.e., induces a surjection on π0.

Definition 3.2.1. [Lur09c] Let n ≥ −1 be an integer. We define the n-connectivity of a map
f : X → Y inductively as follows:

• By convention, any map f is (−1)-connective.

• If n ≥ 0, a map f is n-connective if f is essentially surjective and for any pair of object
x, x′ ∈ X, the induced map X(x, x′)→ Y (fx, fx′) is (n− 1)-connective.

We say f is ∞-connective if f is n-connective for any n.

The notion of connectivity is closely related to that of surjectivity:

Definition 3.2.2 (cf. [BS10]). Let n ≥ 0. A morphism f : X → Y is n-surjective if the
natural map Map(Cn, X)→ Map(∂Cn, X)×Map(∂Cn,Y )Map(Cn, Y ) is an effective epimorphism
of groupoids (note the convention ∂C0 = ∅).

Remark 3.2.3. A map is 0-surjective iff 0-connective iff essentially surjective. When n ≥ 1,
a map f : X → Y is n-surjective if and only if for any parallel pair of (n − 1)-morphisms
(sn−1, tn−1) : ∂Cn → X, the inducded map X(sn−1, tn−1) → Y (fsn−1, ftn−1) is essentially
surjective. In fact, taking the 0-truncation of Corollary 2.5.5, the latter statement is equivalent
to that the induced map fib(Map(Cn, X)→ Map(∂Cn, X))→ fib(Map(Cn, Y )→ Map(∂Cn, Y ))
is an effective epimorphism for any choice of basepoint of Map(∂Cn, X). This is equivalent for
Map(Cn, X) → Map(∂Cn, X) ×Map(∂Cn,Y ) Map(Cn, Y ) to be effective epi because it can be
checked fiberwise over Map(∂Cn, X).

Example 3.2.4. Amorphism f is n-surjective if and only if the n-truncation f≤n : X≤n → Y ≤n

is n-surjective. In particular, the inclusion X≤n ↪→ X is k-surjective for k ≤ n.

Proposition 3.2.5. The following are equivalent:

(1) f : X → Y is n-connective.
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(2) f : X → Y is k-surjective for 0 ≤ k ≤ n.

(3) f≤n : X≤n → Y ≤n is n-connective.

Proof. Unpacking the induction, the n-connectivity of f is equivalent to the essential surjectivity
in addition to that for any 0 ≤ k ≤ n−1 and any parallel pair of k-morphisms (sk, tk) : ∂Ck+1 →
X, the map X(sk, tk) → Y (fsk, ftk) is (n − k − 1)-connective. By downward induction k, the
latter condition can be weakened to that X(sk, tk) → Y (fsk, ftk) is essentially surjective, so
the equivalence of (1) and (2) follows from the remark. Since the k-surjectivity of a map only
depends on the k-truncation, (1) is equivalent to (3).

Remark 3.2.6. The class of n-connecetd maps are closed under pullbacks, filtered colimits,
and disjoint unions. Classically, in an (∞, 1)-topos, there is a inductive characterization of n-
connected maps [Lur09b, Proposition 6.5.1.18]. The same statement or an obvious analog using
the directed diagonals (see Chapter 5 for the directed pullbacks) seems to fail and the author
does not know if there is a version of it.

Definition 3.2.7. Let n ∈ Z≥0 ∪ {∞}. A pointed ∞-category X is said to be n-connective if
the structure map ∗ → X is (n− 1)-connective.

Remark 3.2.8. The n-connectivity of a pointed category does not depend on the choice of the
basepoint, so we may also define the notion of connecitivity for unpointed∞-categories together
with the convention that a ∞-category is 0-connective when it is nonempty.

Proposition 3.2.9. Let (X,x) be a pointed∞-category and n ≥ 0. The following are equivalent:

(1) X is n-connective, i.e., the structure map ∗ x−→ X is (n− 1)-connective.

(2) ΩkX is connected (i.e., (ΩkX)≤0 is connected) for 0 ≤ k ≤ n− 1.

(3) The counit map of BnΩnX → X is an equivalence.

(4) X belongs to the essential image of the functor Bn : MonEn
(∞Cat)→∞Cat∗.

(5) There exists an∞-algebroid X̃ whose underlying (n−1)-algebroid is trivial and a univalent
completion X̃

∼−→ X.

Proof. When n = 0, all the conditions are empty, so we may assume n ≥ 1 and proceed by
induction. When n = 1, the equivalence of the first two conditions is clear from the definition.
Since BΩX → X is always fully faithful, it is an equivalence if and only if X is connected.
This is also equivalent to (4) because B is fully faithful by Remark 3.1.3. For (5), we may take
X̃ = B′ΩX. Now assume n ≥ 1. From the case n = 1, we know that all the conditions imply
X = BY for some Y ∈ Mon(∞Cat). By induction, it suffices to observe that each condition
is equivalent to that for Y with n replaced by n − 1. This is clear for (1) and (2). For (3),
observe that the counit map BnΩnBY → BY equivalent to B(Bn−1Ωn−1Y → Y ) and that

B : ∞Cat∗
B−→ Mon(∞Cat)

forget−−−→ ∞Cat∗ is conservative. The equivalence of (3) and (4) is
easier directly because Bn is fully faithful with the right adjoint Ωn (the existence of the functor
Bn follows from that B is product preserving and Dunn additivity; also see the argument for
Proposition 3.3.7). For (5), if either of Ỹ

∼−→ Y or X̃
∼−→ X is given, we may take X̃ = B′Ỹ and

Ỹ = ΩX̃ for the other.

Proposition 3.2.10. If (X,x) is a n-connective pointed (n− 1)-category. Then X is in fact a
groupoid.
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Proof. Ωn−1X is a En−1-groupoid if X is an (n−1)-category, so ΩnX is a grouplike En-groupoid
and BnΩnX is a groupoid. If n is connective, the counit map BnΩnX → X is an equivalence,
so X is also a groupoid.

Corollary 3.2.11. A pointed ∞-category (X,x) ∈ Cat∗ is ∞-connected if and only if X is
terminal.

Proof. The structure map ∗ → X is (n− 1)-connective if and only if ∗ → X≤n−1 is, so X≤n−1

is terminal by the proposition. Applying Proposition 3.5.1, we have X = colimn∈NX
≤n, so

X ≃ ∗.

Remark 3.2.12. A natural question is the obvious analog of the Freudenthal suspension theorem,
i.e., if the unit map X → ΩΣX is 2n-connective if X is n-connective. The author does not
know the proof or a counterexample. Notice a potential simplification due to the lack of group
completion: ΩΣX ≃ ΩBFreeE1/E0

X ≃
∨
k≥0X

∧k. In particular, the cofiber of the unit map is∨
k≥2X

∧k. Various classical splitting results, as discussed in [DH21], are also worth exploring
in our context.

3.3 Categorical spectra

Our goal here is to give the definitions and some examples of categorical spectra, roughly
summarizing [Ste21, Chapter 13].

Definition 3.3.1. The category of categorical spectra is the limit of right adjoints

CatSp := lim(· · · Ω−→∞Cat∗
Ω−→∞Cat∗)

in PrR (or Ĉat). Its object, a categorical spectrum X ∈ CatSp, is a sequence (Xn, xn)n∈N of
pointed ∞-categories equipped with identifications fn : (Xn, xn)

∼−→ (EndXn+1
(xn+1), idxn+1

).
We will often suppress xn and fn in the notation. We write Ω∞−n for the projection to the n-th
component, so Ω∞−nX = Xn for X = (Xn). We let Σ∞−n denote the left adjoint of Ω∞−n.

One can also define an obvious variant of flagged categorical spectra: CatSpf := lim(· · · Ω−→
∞Algbrd∗

Ω−→∞Algbrd∗).

Example 3.3.2. Recall that the following diagram commutes:

S∗ S∗

∞Cat∗ ∞Cat∗

Ω

Ω

Therefore the vertical maps induce a fully faithful functor Sp ↪→ CatSp. We will see in Re-
mark 3.4.10 that this inclusion admits both left and right adjoints, and in the next chapter we
will see that the sphere spectrum S is an idempotent algebra and Sp is precisely the category of
S-modules.

Remark 3.3.3. The endomorphism Ω on ∞Cat∗ commutes with the limit diagram, so it induces
an endomorphism Ω : CatSp → CatSp. This is actually an automorphism by the coinitiality of
(N≥1)op ↪→ Nop and its adjoint inverse Σ is induced by taking the colimit of Σ :∞Cat∗ →∞Cat∗
in PrL. This is an example of the general fact that one can universally invert an endomorphism
on a category by passing to the sequential limit along the endomorphism. More precisely, the
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left adjoint to the inclusion Fun(BZ, Ĉat) ↪→ Fun(BN, Ĉat) (resp. Fun(BZ,PrL) ↪→ Fun(BN,PrL))
sends the pair (∞Cat∗,Ω) (resp. (∞Cat∗,Σ)) of a category and an endomorphism to (CatSp,Ω)
(resp. (CatSp,Σ)). Moreover, it sends the morphism (S∗,Ω)→ (∞Cat∗,Ω) of pairs to (Sp,Ω)→
(CatSp,Ω).

Warning 3.3.4. We will occasionally use the standard notation X[n] := ΣnX for n ∈ Z, we warn
that this is the left action by S⃗n ∈ ∞Cat⊗∗ , so for instance, in the later chapters, X ⊗ (Y [n])
and (X ⊗ Y )[n] are not necessarily equivalent.

Remark 3.3.5. The reader may wonder what happens if we choose to work with a fixed finite
category level and make the same definition. It turns out that we gain nothing new: we end up
with the category Sp. We may regard Ω : nCat∗ → (n − 1)Cat∗ as an endomorphism of nCat∗
by composing with the inclusion. Now note that Ωn factors through S∗:

· · · S∗ S∗

· · · nCat∗ nCat∗

Ωn Ωn

Ωn

Ωn Ωn

Ωn

Taking the limit horizontally, we observe that the dashed arrows induce the inverse to the
inclusion by the coinitiality of (N≥n)op ↪→ Nop, so if we universally invert Ω : nCat∗ → nCat∗,
we recover the category Sp. If we allow the category levels to vary appropriately over the
limiting diagram, there is a meaningful notion of categorical levels of categorical spectra (see
Example 3.4.9).

Remark 3.3.6. The definition is not new and was made or indicated independently by many
authors, including Horiuchi [Hor18], the author [Mas21] (informally, inspired by the works of
Connes and Consani around F1 [CC20]), Stefanich [Ste21] (who attributes the notion to Con-
stantin Teleman), Johnson-Freyd [Joh23] (who attributes the notion to Claudia Scheimbauer).

Recall that the category of spectra is also the stabilization of the category of connective
spectra:

Sp := lim(· · · Ω−→ Spcn
Ω−→ Spcn).

Here Spcn ≃ CMongp(S) is the category of infinite loop groupoids. We now give an analogous
description of CatSp as the “stabilization” of ∞SMCat, following [Ste21, §13.4]. Note that Ω :
∞Cat∗ → Mon(∞Cat) preserves the cartesian product because it is a right adjoint. In particular,
it induces Ω : MonEn

(∞Cat)→ MonEn
(Mon(∞Cat)) ≃ MonEn+1

(∞Cat) for 0 ≤ n ≤ ∞ that are
compatible along forgetful functors for different values of n. Now consider the following diagram
in PrRω:

... · · ·
...

...
...

CatSp · · · Mon(∞Cat) MonE2
(∞Cat) MonE3

(∞Cat)

CatSp · · · ∞Cat∗ Mon(∞Cat) MonE2(∞Cat)

CatSp · · · ∞Cat∗ ∞Cat∗ Mon(∞Cat)

CatSp · · · ∞Cat∗ ∞Cat∗ ∞Cat∗.

Ω Ω

Ω Ω

Ω Ω

Ω Ω
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Taking the vertical limit (along the forgetful functors), one obtains the following:

Proposition 3.3.7. The diagram defining CatSp lifts to the following diagram in PrRω:

CatSp
∼−→ lim(· · · Ω−→ CMon(∞Cat)

Ω−→ CMon(∞Cat)).

In terms of left adjoints, we have

∞Cat∗ ∞Cat∗ · · · CatSp

CMon(∞Cat) CMon(∞Cat) · · · CatSp.

Σ

FreeE∞/E0

Σ

FreeE∞/E0

B B

The bottom row lies in ModCMon(Pr
L), so CatSp is semiadditive, i.e., it has a zero object 0 and

biproducts ⊕. Also, we have an equivalence Σ∞ ≃ B∞ ◦ FreeE∞/E0
.

We continue to denote the projection to the n-th component by Ω∞−n. The left adjoint of
Ω∞−n will be denoted by B∞−n : CMon(∞Cat) → CatSp. By cofinality, we may 1-periodically
extend the above N(op)-indexed diagrams to Z-indexed diagrams without chaning the (co)limits;
so we use the notations B∞−n, etc. for n ∈ Z.

Definition 3.3.8. We say that a categorical spectrum is connective if it lies in the essential
image of B∞. We let CatSpcn ⊂ CatSp denote the category of connective categorical spectra.

Warning 3.3.9. Even though we use the term “connective,” we do not yet know an appropriate
definition of an analog of a t-structure on a stable (∞, 1)-category.

Example 3.3.10. For C ∈ CMon(∞Cat), the categorical spectra B∞−nC is a sequence of ∞-
categories

(B∞−nC)k =


Ωn−kC (k ≤ n)
C (k = n)

Bk−nC (k ≥ n)

For the next definition, recall a free E∞-algebra on X ∈ ∞Cat (resp. ∞Cat∗) is given by the
symmetric algebra

⊔
n≥0X

×n/Σn (resp.
∨
n≥0X

∧n/Σn).

Definition 3.3.11. A categorical spectrum of the form Σ∞X for X ∈ ωCat∗ (in particular,
Σ∞+X = B∞ FreeE∞ X for X ∈ ∞Cat) is called a suspension spectrum. We let

F := Σ∞+ (∗) = Σ∞S0 = B∞Fin≃

be the suspension spectrum on a point. We will call it the finite set spectrum, the unit, or the
directed sphere spectrum.

Remark 3.3.12. Since Ω preserves filtered colimits by Remark 3.1.11, CatSp is compactly gener-
ated and Ω∞ : CatSp→∞Cat∗ preserves filtered colimits. It follows that F is a compact object
of CatSp.

We close this section with some remarks on the duality involutions.

Remark 3.3.13. ([Ste21, Definition 13.2.12]) Just as a spectrum can be seen as a “CW complex
with possibly negative dimensional cells,” one can regard a categorical spectrum as a “∞-
category with negative dimensional cells.” To make this precise, let (Xn) be a categorical
spectrum and consider the map Map(Cm, Xn)

∼−→ Map(Cm,ΩXn+1)
∼−→ Map(ΣCm, Xn+1) →



3.4. LEVELWISE PROPERTIES OF CATEGORICAL SPECTRA 39

Map(Cm+1, Xn+1) induced by Cm+1 = σCm ↠ ΣCm. We define the pro-representable globular
presheaf cell•(−) : CatSp→ PSh(G) as the colimit of the following diagram of monomorphisms:

Map(C•, X0) ↣ Map(C•+1, X1) ↣ Map(C•+2, X2) ↣ · · · .

This can be moreover extended to a presheaf over G(−∞,∞) = colim(G σ−→ G σ−→ · · · ) and given
a structure of compositions.

Remark 3.3.14. Let τ : Z≥1 → Z/2 be a function and let [n] (for n ≤ 0) be the shift operator,
i.e., τ [n] is the function τ [n](k) = τ(k−n). Then the following diagram commutes (to construct
the commuting homotopy, observe that two compositions are equal on Θ):

∞Cat ∞Cat

∞Cat ∞Cat.

σ

Dτ[−1] Dτ

σ

Because ΣX = cof(σ(∗)→ σX), it follows that the following diagrams also commute (the right
one is by taking the right adjoints; the truncated information of τ(1) = τ [−1](0) acts by reversal
of the monoidal structure, which is invisible on the underlying category):

∞Cat∗ ∞Cat∗

∞Cat∗ ∞Cat∗,

Σ

Dτ[−1] Dτ

Σ

∞Cat∗ ∞Cat∗

∞Cat∗ ∞Cat∗

Ω

Dτ Dτ[−1]

Ω

.

Consequently, the category CatSp admits an action of
∏

Z Z/2 ≃ lim(· · · →
∏

Z≥1
Z/2 [−1]−−−→∏

Z≥1
Z/2). We continue to denote by Dτ the involution corresponding to τ : Z → Z/2. By

definition, this is the involution satisfying Dτ [n] ◦ Ω∞−n = Ω∞−n ◦ Dτ and Dτ ◦ Σ∞−n =
Σ∞−n ◦ Dτ [n] i.e., it sends (Xn) to (Dτ [n]Xn) in components. One may think of τ as the
indicator function of the dimensions of stable cells that get flipped.

Definition 3.3.15. The total dual (resp. odd dual, even dual) is the duality involution Dτ

corresponding to when τ is the indicator function of Z (resp. odd numbers, even numbers). We
continue to denote the total dual by D = (−)◦ and the odd and even dual by (−)op, (−)co,
respectively.

Explicitly, the total dual of X = (Xn) is given by X◦ = (X◦n), and the odd dual Xop is given
by the “alternating” sequence (Xop

0 , Xco
1 , X

op
2 , · · · ) and similarly for the even dual.

3.4 Levelwise properties of categorical spectra

Many properties and structures of categorical spectra are defined levelwise. We will list some
examples and formulate typical ways to universally impose such properties.

Definition 3.4.1. Let P = {P (n)}n be a sequence of properties of symmetric monoidal
(flagged) ∞-categories such that if Xn+1 satisfies P (n + 1), then ΩXn+1 satisfies P (n). We
say a categorical spectrum X = (Xn)n satisifes P (or is a P -categorical spectrum) if Xn satis-
fies P (n). We let the full subcategory of the P -categorical spectrum by

CatSpP := lim
n
(· · · → ∞SMCatP (n) Ω−→∞SMCatP (n+1) → · · · ) ⊂ CatSp.
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If the property only depends on the underlying pointed ∞-categories, one can also define

CatSpP := lim
n
(· · · → ∞CatP (n)

∗
Ω−→∞CatP (n+1)

∗ → · · · ) ⊂ CatSp.

More generally, if we have a sequence of categories {in : Cn →∞SMCat} equipped with the lift
of the loop, i.e., functors Ω̃ : Cn+1 → Cn with the following commutative square (∗n), one can

define CatSpC as the limit limn Cn in Ĉat:

CatSpC · · · Cn+1 Cn

CatSp · · · ∞SMCat ∞SMCat,

i

Ω̃

in+1 (∗n) in

Ω

and similarly using ∞Cat∗ or ∞Catf instead of ∞SMCat.

Remark 3.4.2. An index-shift of a levelwise property is again a levelwise property. The corre-
sponding full subcategory is some shift CatSpP [n] of CatSpP .

Remark 3.4.3. If in and Ω̃ admit left adjoints Ln ⊣ in and B̃ ⊣ Ω̃, then the above diagram lives
in PrR, so i also admits a left adjoint L. If Cn is a localization, i.e., in is fully faithful with a left
adjoint Ln, the existence of B̃ is automatic. In fact, we take B̃ = Ln+1 ◦ B ◦ in with the unit
and counit

B̃Ω̃ = Ln+1BinΩ̃ ≃ Ln+1BΩin+1 → Ln+1in+1
∼−→ idCn+1 ,

idCn

∼←− Lnin → LnΩBin
∼−→ LnΩin+1Ln+1Bin ≃ LninΩ̃Ln+1Bin

∼−→ Ω̃Ln+1Bin = Ω̃B̃,

and moreover B̃ is fully faithful. In other words, for a levelwise property P = {P (n)}, we
may levelwise perform P -delooping BP by localizing the connective delooping B, and the P -
envelope B∞,P of B∞X is (as a categorical spectrum) the colimit of these deloopings: B∞,PX ≃
colimn B

∞−n(BP )nX. An analogous claim except the fully faithfulness of B̃ is true when
∞SMCat, B is replaced by ∞Cat∗ and Σ. Note that the left adjoint is in general not given
levelwise by Ln.

Let Adj be the free adjunction 2-category and l : C1 → Adj be the inclusion of the universal
left adjoint 1-morphism (see Section 6.1 for more detail); note that this is an epimorphism.
Recall the following consequece of [Ste21, Proposition 5.3.17]:

Proposition 3.4.4. Let I be a category, D be a 2-category (e.g. D = Ĉat) and X : I →
Fun(Adj,D) be a diagram whose restriction Y : I → Fun(Adj,D)

l∗−→ Fun(C1,D) admits a
limit Y ◁ : I◁ → Fun(C1,D) (which is computed pointwise). Then there is a limit diagram
X◁ : I◁ → Fun(Adj,D) making the followig diagram commute:

I Fun(Adj,D)

I◁ Fun(C1,D)

X

l∗

Y ◁

X◁

Remark 3.4.5. By replacing D by Dop or Dco, similar consequences with “limit” replaced by
“colimit” or “left adjoint” replaced by “right adjoint” hold.

Corollary 3.4.6. Suppose the square (∗n) is vertically right (resp. left) adjointable for every n
with in ⊣ Rn (resp. Ln ⊣ in). Then the morphism i admits a right adjoint R levelwise given by
Rn (resp. left adjoint L levelwise given by Ln) , i.e., the natural map Ω̃∞−n ◦R→ Rn ◦Ω∞−n
is an equivalence.
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Remark 3.4.7. For the assumption of the lemma (for Rn), it suffices to check the horizontal left
adjointability of (∗)n, i.e., that B̃ ⊣ Ω̃ exists and commute with in, and the existence of the
right adjoints Rn.

Example 3.4.8 (Univalence). Being a categorical spectrum is a levelwise property of a flagged
categorical spectrum; if X ∈ ∞Algbrd∗ is an∞-category, then ΩX is also an∞-category. There
is a univalent completion functor Luni : CatSpf → CatSp which levelwise is Luni : ∞Catf →
∞Cat because (∗n) is vertically left adjointable by Remark 3.1.3. As we have seen, the infinite
delooping spectrum of a symmetric monoidal ∞-category C is the univalent completion of a
more naive algebroid delooping: B∞C = LuniB′

∞
C.

Example 3.4.9 (k-categorical spectra, [Ste21, Definition 13.2.17, Proposition 13.2.20]). Let
−∞ ≤ k ≤ ∞. We say X is a k-categorical spectrum if Xn is max{n + k, 0}-category. We
let kCatSp ⊂ CatSp be the full subcategory of k-categorical spectra. On one extreme, we have
∞CatSp = CatSp, while on the other we have −∞CatSp = Sp. For finite k, kCatSp are shifts
of one another. Many interesting examples of categorical spectra live in 0CatSp or 1CatSp. It
defines the categorical hierarchy that interpolates between spectra and categorical spectra:

Sp = −∞CatSp ⊂ · · · ⊂ (−1)CatSp ⊂ 0CatSp ⊂ 1CatSp ⊂ · · · ⊂ ∞CatSp = CatSp.

Recall that the inclusion nCat ↪→∞Cat admits both left and right adjoints, denoted by ≤n(−)
and (−)≤n. In particular, kCatSp ⊂ CatSp is closed under limits and colimits, so the inclusion
has both left and right adjoints, again denoted by ≤k(−) and (−)≤k. In the following dia-
gram, the square (∗n) is horizontally left adjointable, so in this range, the right adjoint is given
levelwise, i.e., Ω∞−nX≤k ≃ (Ω∞−nX)≤(n+k) if n ≥ −k.

kCatSp · · · (n+ k + 1)Cat∗ (n+ k)Cat∗

CatSp · · · ∞Cat∗ ∞Cat∗.

i

Ω

in+1 (∗n) in

Ω

However, the left adjoint Σ : S∗ → S∗ to Ω is not the restriction of Σ :∞Cat∗ →∞Cat∗, so we
must take the monoidal structure into account, as the next remark shows.

Remark 3.4.10. The condition that Xn is a groupoid for n ≤ −k in fact forces that Xn is
grouplike for n < −k, so kCatSp = limn Cn for Cn ⊂ ∞SMCat defined by

Cn =

{
CMon((n+ k)Cat) (n ≥ −k)
CMongp(S) (n < −k).

The left (and right) adjoints of nCat ↪→ ∞Cat preserve products, so they induce left and
right adjoints of CMon(nCat) ↪→ CMon(∞Cat). Also note that CMongp(S) ⊂ CMon(S) admits
left adjoint (−)gp given by the group completion and the right adjoint (−)× that takes the
maximal Picard subgroupoid, i.e. the components of invertible objects. Composing these,
in : Cn ↪→ ∞Cat admits left and right adjoints. The square (∗n) is vertically right adjointable,
so in particular, the underlying spectrum functor (−)≤−∞ : CatSp → Sp is levelwise given by
(Xn) 7→ ((Xn)

≤0,×). Notice, however, that (∗n) is still not vertically left adjointable [Ste21,
Remark 13.4.21].

Example 3.4.11 (Connectivity). Let −∞ ≤ k ≤ ∞ and consider the property P (n) of being
(n + k)-connective and say X is k-connective when it is satisfied. Denote the corresponding
full subcategory by CatSpk-cn. When k is finite, it is the essential image of the fully faithful
functor B∞+k : ∞SMCat → CatSp whose right adjoint is Ω∞+k. The k-connective cover of X
is Xk-cn = B∞+kΩ∞+kX, i.e., the terminal k-connective categorical spectra with a map to X.
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Example 3.4.12 (adjoints and duals). In Chapter 6, we will discuss the levelwise property of
being n-adjointful. The cobordism hypothesis gives a geometric description of the adjointful
envelope for some categorical spectra.

Remark 3.4.13. Many categorical spectra in nature arise as the P -envelope construction for
some property P . We expect that the examples include the following, but we will not pursue
the details here (because requires extra work and some are not yet in the literature).

(1) (n-semiadditivity) For finite n and an (∞, n)-category C, [Lur09c, §3.2] outlines the def-
inition of the n-category Famk

n(C). Roughly speaking, it is the n-category of spans of
k-truncated π-finite groupoids coherently decorated by cells of C. There is a morphism
C → Famk

n(C) exhibiting Famk
n(C) as the universal k-semiadditive n-category under C,

as proven by [Har20] in the n = 1 case and the general case (including the definition of
k-semiadditive n-category) is announced by Scheimbauer–Walde [Sch23]. If C itself is k-
semiadditive, it gives the finite path integral functor1

∫
: Famk

n(C)→ C. If X = (Xn) is a

categorical spectrum, almost by definition Famk(X) := {Famk
n(Xn)}n≥0 forms a categori-

cal spectrum. One can define the k-semiadditivity of categorical spectra so that Famk(X)
is the k-semiadditive envelope of X.

(2) (n-stability) For a ring spectrum R, the spectrally enriched symmetric monoidal category
BR admits a stable envelope PerfR and stable presentable envelope LModR. In [Ste20],
Stefanich defined the categorical spectra R = {nModR} and the notion of n-presentable
(stable) n-categories. We expect that the construction B∞R 7→ R can be realized as the
0-presentable stable envelope and similarly for a finitary version of it.

(3) (separable closure: [Joh23]) With an appropriate finitary version of R as above, for a
ring of characteristic 0, Johnson-Freyd and Reutter defined a notion of higher categori-
cal separable closure (either characterized by having a trivial etale homotopy type or by
Nullstellensatz-like condition). For complex numbers, it constructs the categorical spec-
trum of super-vector space, super-algebra, and so on. This is likely another example of an
envelope construction with an appropriate property of algebraic closedness.

Combining these envelopes with the right adjoint Gm := (−)≤−∞ : CatSp→ Sp, we can extract
a spectrum containing an interesting new information. For instance, Gm(R) gives an infinite
sequence of nontrivial deloopings extending the classically well-known R×,Pic(R),Br(R), i.e.,
the units, the Picard space and the Brauer space of a spectrum. A part of the characterizing
properties of the separable closure of C is that Gm(Csep) = IC× , the Brown-Comenetz dualizing
spectrum of C×. This recovers the Freed–Hopkins’ proposal that IC× is the universal target of
a “physical” invertible TQFT.

3.5 Finiteness properties of categorical spectra

For a spectrum X = (Xn), a fundamental observation is that X is the colimit colimnΣ
∞−nXn.

The formula remains valid for categorical spectra for the same formal reason:

Proposition 3.5.1. Let {Cn} ∈ Fun(N▷,PrLω) be a colimit diargram of compactly generated
categories and let Ln ⊣ Rn denote the structure morphisms Cn → C := C∞. Then there is a
colimit diagram L0R0 → L1R1 → · · · → idC in Fun(C,C) induced by the counit maps.

1The importance of this functor is explained in [Fre+09]. Famk
n(C) classifies classical field theories, and the

composition with
∫

gives the quantization. An important example is the Dijkgraaf-Witten theory.
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Proof. Let C̃ → N▷ be the cartesian and cocartesian fibration classifying the diagram {Cn}.
Because {C Rn−−→ Cn} is a limit cone, C is equivalent to the categoary of cartesian sections on
N [Lur09b, Prop. 3.3.3.1] via Cartesian transport: C

∼−→ Funcart/N▷ (N▷, C̃) ∼−→ Funcart/N (N, C̃|N).
Composing with the cocartesian transport C̃ → C (i.e., the left adjoint of the inclusion), we
get the diagram in question C → Fun(N▷, C̃) → Fun(N▷,C). Let f : colim(L0R0 → L1R1 →
· · · )→ idC be the comparison map. The above equivalence also implies Rn : C→ Cn are jointly
conservative, so to show that f is an equivalence, it suffices to check Rnf is an equivalence for
each n ∈ N. This follows from that Rm preserves sequential colimits and that for eachm ≥ n, the
map Rnεm : RnLmRm → Rn induced by the counit map is equivalent to Rn,mRmεm ≃ idRn .

Corollary 3.5.2. Let X = (Xn) be a categorical spectrum. Then there are canonical equiva-
lences colimnΣ

∞−nXn
∼−→ colimn B

∞−nXn
∼−→ X.

We will use this corollary to deduce that any categorical spectrum is a filtered colimit of
finite categorical spectra. We must first define the notion of finite categorical spectra. Recall
that for a spectrum X ∈ Sp, the following conditions are equivalent:

(1) X is finite, i.e., X ≃ Σ∞−nY for some natural number n and a finite pointed CW complex
Y .

(2) X is perfect, i.e., X belongs to the smallest stable subcategory which contains S and is
closed under retracts.

(3) X is compact, i.e., MapSp(X,−) : Sp→ S preserves filtered colimits.

(4) X is dualizable, i.e., the functor X⊗(−) : Sp→ Sp admits left or right (equivalently, both)
adjoints.

Ideally, we wish to modify each definition for categorical spectra and prove that they are all
equivalent. For now, we only work out the formal part of it. To define perfectness of categorical
spectra, we must understand the notion of stability first. This is still a work in progress (see the
introduction to Chapter 5). What is clear is that the perfect categorical spectra should not be
closed under 1-categorically finite colimits; instead, they must be replaced by some lax analogs.

Definition 3.5.3. A (pointed) ∞-category is finite if it belongs to the smallest subcategory
∞Catfin(∗) ⊂ ∞Cat(∗) that contains the (pointed) cells G = {Cn(,+)}n≥0 and closed under finite

colimits. A categorical spectrum is finite if it is of the form Σ∞−nX for some integer n and
a finite pointed ∞-category X. We write CatSpfin ⊂ CatSp for the full subcategory of finite
categorical spectra.

Remark 3.5.4. Finite ∞-categories are compact and the inclusion ∞Catfin → ∞Cat preserves
finite colimits. By [Lur09b, Proposition 5.3.5.11, Example 5.3.6.8], the left Kan extension
Ind(∞Catfin(∗))→∞Cat(∗) is fully faithful and colimit preserving. Since the cells generate ∞Cat

under colimits, we have Ind(∞Catfin(∗))
∼−→∞Cat(∗). In particular, every (pointed) ∞-category is

canonically a filtered colimit of finite ones.

Example 3.5.5. Any finite torsion-free complex is a finite ∞-category by [Cam23a, Theorem
B]. In particular, any strong Steiner ∞-category corresponding to a finite-dimensional strong
Steiner complex is finite; examples include the objects of Θ, lax cubes, and orientals. The author
does not know if any finite computad is a finite ∞-category.

Corollary 3.5.6. Any categorical spectrum is a filtered colimit of finite spectra. More precisely,
the inclusion CatSpfin ⊂ CatSp induces an equivalence Ind(CatSpfin)

∼−→ CatSp.
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Proof. Since Ω∞−n : CatSp → ∞Cat∗ preserves filtered colimits, finite categorical spectra are
compact. By [Lur09b, Proposition 5.3.5.11], the left Kan extension Ind(CatSpfin) → CatSp is
fully faithful. To show that it is an equivalence, we must check that the smallest full subcategory
of CatSp containing CatSpfin and closed under filtered colimits is CatSp itself, which follows from
Corollary 3.5.2 and Remark 3.5.4.

Corollary 3.5.7. A categorical spectrum X is compact if and only if it is a retract of a finite
categorical spectrum.

Remark 3.5.8. In the classical case of spectra, we can remove the retraction from the statement.
The standard argument uses homology theory and Hurewicz’s theorem: homology theory pre-
cisely tells us the recipe to approximate a space by cells, and stably it is conservative enough
that the recipe can completely recover the spectrum in question. We do not know if any compact
categorical spectrum is a finite suspension categorical spectrum (also note that the analogous
statement for equivariant spectra is known to be false). In any case, it is desirable to have an al-
gebraic invariant that extracts the data of cells required to build an∞-category or a categorical
spectrum.

We briefly discuss the dualizability of a categorical spectrum. Recall the following definition:

Definition 3.5.9. Let C be a monoidal category. An objectX ∈ C is left- (resp. right-)dualizable
if the functor X ⊗ (−) : C→ C admits a left (resp. right) adjoint.

The dualizability depends on the monoidal structure constructed in the next chapter. How-
ever, note the following general fact in a closed monoidal category that a dualizable object gets
as much compactness property as the unit object:

Proposition 3.5.10. Suppose we are given a closed monoidal structure ⊗ on CatSp whose unit
is F. Then any left- or right-dualizable object is compact.

Proof. Suppose X has a right dual XR. By assumption, the tensor product admits an internal
hom: Map(Z, [X,Y ]) ≃ Map(X ⊗ Z, Y ) ≃ Map(Z,XR ⊗ Y ), so, in general, we have [X,Y ] ≃
XR ⊗ Y (similarly, JX,Y K ≃ Y ⊗XL for the left dual XL and the right internal hom J−,−K).
Plugging Z = F, we see that Map(X,Y ) ≃ Map(F, XR⊗Y ) and since F is compact, this functor
is colimit-preserving in Y .

The assumption is clearly satisfied once the monoidal structure is constructed. In particular,
any dualizable categorical spectrum is compact. We do not know if all finite categorical spectra
are dualizable, but we will give some examples of dualizable categorical spectra in Chapter 5.



Chapter 4

Tensor product of categorical
spectra

The main goal of this chapter is to define the tensor product of categorical spectra through its
universal property. We have already explained the strategy in detail in the introduction. Here
we motivate our approach slightly differently, following the history of the corresponding problem
for spectra.

The first homotopy category of spectra hSp with the “smash product” symmetric monoidal
structure was defined in [Boa65] and later a more handcrafted approach in [Ada95] got popular.
However, for higher algebra, it had serious deficiencies: the homotopy category has bad formal
properties (e.g. it does not have most limits and colimits), fails to encode homotopically nuanced
algebraic structures, and does not work well in families.

The first batch of successful attempts in defining the symmetric monoidal structure remem-
bering all homotopical data came around model-categorically (e.g. [Elm+07], [Man+01]). The
trick was a reversed microcosm principle: if we could define a symmetric tensor product, we
would have the symmetry of the unit, so instead of defining spectra as merely N-indexed families
of spaces, we build a model that by design takes symmetries of the spheres into account. The
minimalistic choice is to consider the symmetric group action on the spheres encoding the Koszul
sign rule, i.e., we define spectra as a Fin≃ :=

⊔
n≥0 BΣn-indexed family of spaces. This leads

to the definition of symmetric spectra. They were good enough for many purposes, but model
categories were too rigid to behave well in families, and the choice of a model was arbitrary,
contrary to the canonicity of the stable homotopy category.

The truly universal object was in between—the (∞, 1)-category Sp of spectra (Boardman’s
original definition was close to the modern one, except that the language was missing back
then). After thoroughly developing (∞, 1)-category theory, Lurie characterized the symmetric
monoidal ((∞, 1)-)category of spectra as the unit of the symmetric monoidal category PrLst of
presentable stable categories ([Lur17, §4.8]). Note that once we pass to the (∞, 1)-category
land, sequential spectra work perfectly; being natively enriched over homotopy types and not
sets, the suspension functors carry the automorphisms equivalent to that of the spheres.

The lesson is that we should take the symmetries of the spheres and suspension functors
into account. Coming back to our problem, we have already seen that the suspension Σ :
∞Cat∗ →∞Cat∗ is naturally equivalent to S⃗1 ? (−) and D(−) ? S⃗1. One can think of this as
the twisted symmetry of the suspension functor, where the twist comes from the total dual D.
Classically, the sphere commutes with other CW complexes by Koszul sign rule, but since we do
not have negatives and instead directions of the cells, we must express the sign rule externally
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by switching the directions of the cells. This allows us to expect the formula

Σ∞−mX ⊗ Σ∞−nY = S⃗−m ⊗ Σ∞X ⊗ S⃗−n ⊗ Σ∞Y

= S⃗−(m+n) ⊗ Σ∞DnX ⊗ Σ∞Y

= Σ∞−(m+n)((DnX)⊗ Y )

for the tensor product of suspension spectra. Based on ∞Cat?∗ , we can hope at most an E1-
monoidal structure, or some ∗-algebra strucutre on CatSp. However, even to prove the associa-
tivity (and its higher coherence), we must be able to move suspensions around canonically ; this

information is packaged conveniently in the half-central structure on S⃗1, which we will establish
in Section 4.1. In fact, we will show the existence of a unique half-central structure on S⃗1, which
deserves to be called the categorical Koszul sign rule.

The rest of the work to define the tensor product is in Section 4.2 and is rather formal,
modifying the previously available techniques to the E1-setting. This will moreover prove the
monoidal universal property CatSp⊗ = ∞Cat?∗ [S⃗

−1]. Note that although CatSp is formally

obtained by inverting the endomorphism S⃗1 ⊗ (−), it does not immediately imply that this

procedure inverts S⃗1 monoidally; this problem already exists in the commutative setting (see the
references in the introduction of the section). We close the chapter by Section 4.3, establishing
some basic results on the tensor product.

4.1 Half-central structure of S⃗1

This section contains perhaps the most important technical ingredient of this thesis: the half-
central structure on the directed circle S⃗1 = BN. This is the higher categorical incarnation of
the Koszul sign rule in the usual homotopy theory. We will define the half-center of ∞Cat∗ and
prove that the directed circle S⃗1 = BN admits a unique half-central structure (Theorem 4.1.10).
This will be the key technical input for the construction of the tensor product of categorical
spectra in section 4.21.

4.1.1 Half-center

We begin by recalling the notion of the center of a monoidal category. A good reference for this
and the next subsection is [BFN10]. In the following definition, the classical case is when A
is a monoidal (1, 1)-category, i.e., when V = (1, 1)Cat with cartesian monoidal structure. The
example that we will specialize later is A =∞Cat?∗ and V = PrL,⊗ω .

Definition 4.1.1. Let A be an E1-algebra object of V ∈ CAlg(PrL). The center ZV(A) of A (in
V) is the object EndBModA(V)(A). A central structure on s ∈ A (i.e. s : 1V → A) is a lift of s
along the forgetful functor2 ZV(A) = EndBModA(A) → EndRModA(A) ≃ A. We will omit V from
the notation when it is not confusing or relevant.

To understand the meaning of the definition, suppose s ∈ A admits a central structure.
The object s is identified with a right A-module morphism s ⊗ (−) : A → A. A bimodule
homomorphism structure promoting this includes the isomorphism s⊗ (t⊗ (−)) ≃ t⊗ (s⊗ (−))

1When inverting a set of elements S of a (noncommutative) monoid M , one only requires a condition on
S weaker than S ⊂ Z(M), called the Ore condition, to have good control over S−1M . For the definition of
monoidal structure, it might be possible to define a categorified Ore condition instead. However, it will become
a routine to commute the directed spheres with other objects, so it is independently useful to know that such a
maneuver is completely canonical and harmless.

2Not to be confused with another forgetful functor EndBModA (A)→ EndLModA (A) ≃ Arev.



4.1. HALF-CENTRAL STRUCTURE OF S⃗1 47

naturally in t, i.e., τ : s ⊗ (−) ≃ (−) ⊗ s. This is all we need when V is a (1, 1)-category (e.g.
V = Set) and being central is a property, but in general this is the first piece of the structure
with infinitely many coherence data.

Remark 4.1.2. As we will see below, the center is just another name for the Hochschild cohomol-
ogy of A, seen as a bimodule over itself. The notion of center defined above is sometimes called
the E2-center because it admits a canonical structure of an E2-algebra object of V, with which
the center is characterized by a universal property (see [Lur17, §5.3]). This E2-structure on the
center can be naturally understood from Morita theory. One expects that Morita 2-V-category
Alg(V) of E1-algebras and bimodules in V can be defined in a similar manner as (the easiest case
of) [JS17]. In this category, A as an algebra is an object, and A as a bimodule is the identity
morphism of the object A, so the center admits a description as the double-loop object

ZV(A) ≃ Ω(Ω(Alg(V), A), idA),

from which the E2-structure is clear.

According to Proposition 3.1.9, it seems natural to expect that S⃗2 = S⃗1 ? S⃗1 lifts to the cen-
ter, which would imply that Σ∞ :∞Cat∗ → CatSp lifts to an ∞Cat?∗ -bimodule homomorphism.
However, defining a central structure can be difficult in general, a priori requiring infinitely
many coherence data. It turns out to be easier to directly formulate the coherence data ex-
tending Proposition 3.1.9, namely the “half-central” structure of S⃗1; gauntness of S⃗1 makes it
homotopy-theoretically more tractable than S⃗2.

To define the notion of the half-center (with respect to an involution D), let D : A→ A be a
monoidal endofunctor equipped with an equivalence D◦D ≃ idA. There is a locally fully faithful
functor Alg(V) → Alg(V) which is the identity on objects and regards algebra homomorphism
as bimodules (we do not need a precise construction of Alg(V), however). Explicitly, an algebra
homomorphism f : A → B can be seen as an (A,B)-bimodule fB, whose underlying right
B-module is B itself and the left action of A is provided by f . By abuse of notation, we denote
the (A,A)-bimodule DA also by D.

Definition 4.1.3. The half-center of A with respect to D is ZV(A,D) := HomBModA(A,D)3.

Remark 4.1.4. The following diagram commutes (note A = D = D ⊗A D after forgetting to
RModA):

Z(A,D) ≃ HomBModA(A,D) HomBModA(D,D ⊗D)

A ≃ EndRModA(A,A) HomBModA(D,A)

D⊗A(−)
∼

forget ≃

forget

Thus lifting x ∈ A to Z(A,D) in fact gives a simultaneous lift to Hom(A,D) and Hom(D,A).
In particular, a half-central structure on x induces a central structure on x⊗ x by composition
Hom(A,D)×Hom(D,A)→ Hom(A,A) = Z(A).

4.1.2 Cyclic bar construction and the Hochschild cohomology

Here we review the standard resolution of a bimodule into free ones, called the cyclic bar con-
struction and the resulting description of the half-center ZV(A,D) as the Hochschild cohomology
of the (A,A)-bimodule D.

3optimally, this is an object of V, but for our purposes the underlying object in S suffices.
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Let A,B be E1-algebras in V and letM,N be (A,B)-bimodules. Our goal is find a convenient
description of Hom

ABModB(V)(M,N). Using the equivalence ABModB(V) ≃ LModA(RModB(V)),
we have an adjunction

LModA(RModB(V)) RModB(V)
A⊗(−)

⊥

with the comonad T = A⊗(−). The associated comonad resolutionM ≃ colim[n]∈∆op(Tn+1M)
gives

Hom
ABModB (M,N) ≃ lim

[n]∈∆
Hom

ABModB (A
⊗(n+1) ⊗M,N) ≃ lim

[n]∈∆
HomRModB (A

⊗n ⊗M,N).

Now we apply this to the case A = B,M = A, N = D = DA, where D : A→ A be an involution
as before. As the right A-module structure on D is identical to A, we see

ZV(A,D) := HomBModA(A,D) ≃ lim
[n]∈∆

HomRModA(A
⊗n ⊗A,A) ≃ lim

[n]∈∆
HomV(A

⊗n, A).

Remark 4.1.5. On the right-hand side, the data of the involution D is encoded in the cosimplicial
structure. Explicitly, the coface map di : HomV(A

⊗n, A)→ HomV(A
⊗(n+1), A) sends f : A⊗n →

A to

dif : x0 ⊗ · · · ⊗ xn 7→


D(x0)f(x1 ⊗ · · · ⊗ xn) (i = 0),

f(x0 ⊗ · · · ⊗ xi−1xi ⊗ · · · ⊗ xn) (1 ≤ i ≤ n),
f(x0 ⊗ · · · ⊗ xn−1)xn (i = n+ 1).

4.1.3 Digression: obstruction theory for totalization of cosimplicial
spaces

We digress a bit and try to explicate the coherence of (half)-central structures on an object.
As we saw in the last section, the half-center is the totalization of a cosimplicial object, so one
can try to slice the cosimplicial diagram in skeletal layers to write down the obstructions to
the existence of a half-central structure. In our case of interest, the obstructions turn out to
live in contractible spaces, in which case this section is subsumed by a simpler argument in
Lemma 4.1.12. Nevertheless, we are including the exposition to give the intuitive description
of the half-central structure in 4.1.4. The material is standard since [Bou89] but we provide a
concise, model-independent account. See also [MS15] for a similar treatment of some related
material.

Notation 4.1.6. For a functor f : C→ D, we denote the restriction Fun(D,S)→ Fun(C,S) by
f∗ and the right Kan extension by f∗, so we have an adjunction f∗ ⊣ f∗. Recall the equivalence
lim f∗F

∼−→ limF .

Let X = X• be a cosimplicial object in S. Our goal is to understand when a point x0 ∈ X0

lifts to the totalization TotX := limX•. Let ∆≤n ⊂∆ denote the full subcategory spanned by
[k] for k ≤ n, let X≤n : ∆≤n → S be the restriction of X and TotnX := limX≤n. We have the
following tower of canonical maps:

TotX → · · · → Tot2X → Tot1X → Tot0X = X0.

This is a limit diagram because the natural map colimn∆≤n → ∆ is an equivalence, and the
limit of an S-valued functor is the space of cocartesian sections of its unstraightening (cf. [Hau]).
Now our task is to understand the fiber of Totn+1X → TotnX at a given point xn ∈ TotnX.
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Let RnX : ∆≤n+1 → S be the right Kan extension of X|∆≤n
andMnX := (RnX)n+1 (called

the n-th matching object of X). The limit of the unit natural transformation α : X≤n+1 → RnX

is the map in question: Totn+1X → limRnX
∼−→ TotnX.

Let ∆inj
≤n+1 ⊂∆≤n+1 denote the subcategory with the same objects but only with injective

morphisms. The forgetful functor from the category of sub-simplices u : (∆inj
≤n+1)/[n+1] →

∆≤n+1 is coinitial (see e.g. [Lur17, p. 1.2.4.17]), so limX ≃ limu∗X. Let C = (∆inj
≤n)/[n+1]

so that C▷ = (∆inj
≤n+1)/[n+1], and let C

i−→ C▷
j←− {[n + 1]} be the inclusions. For any functor

F : C▷ → S, the functor j∗j
∗F is constant at F ([n+ 1]) and the counit F → i∗i

∗F replaces the
value F [n+ 1] by the point ∗. It follows that the following square in Fun(C▷,S) is cartesian:

F j∗j
∗F

i∗i
∗F i∗i

∗j∗j
∗F.

η η′

Recall that the limit of a constant diagram is given by the cotensoring with the geometric
realization (groupoidification) of the diagram shape. Also note that the geometric realization of
C and C▷ are Sn and ∗ because, as a simplicial set, C is the barycentric subdivision of ∂∆n+1.
As a result, the limit of the above square over C▷ is the following cartesian square in S:

limF F [n+ 1]

lim i∗F (F [n+ 1])S
n

.

η η′

Plugging α : X≤n+1 → RnX into F , we get a cartesian cube (i.e. the cube is a limit diagram,
cf. [Lur17, section 6.1.1]) η(α) ⇒ η′(α). Comparing the initial vertices of η(α), η′(α) with the
pullback of the rest of the squares (and since i∗α is an equivalence), we see that the following
square in S is cartesian:

Totn+1X Xn+1

TotnX (Xn+1)S
n ×(MnX)Sn MnX

Tracing the construction, one sees that the map Sn → Xn+1 corresponding to an element
xn ∈ TotnX sends the basepoint of Sn (coming from 0 ∈ ∂∆n+1) to (d0)n+1(x0), where x0 is
the element of X0 that underlies xn. Now we can show the following result:

Proposition 4.1.7. A given point xn ∈ TotnX lifts to xn+1 ∈ Totn+1X if and only if the
induced map o(xn) : Sn → Xn+1 is trivial in πn(X

n+1, (d0)n+1(x0)). When a lift exists, the
space of lifts is equivalent to Ωn+1(Nn(X), (d0)n+1(x0)), where N

n(X) is the fiber of Xn+1 →
Mn(X) at the image of xn.

Proof. The image of xn in (Xn+1)S
n ×(MnX)Sn MnX is equivalent to the data of the following

commutative square

Sn Xn+1

∗ MnX

o(xn)

xn+1
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and the data of the lift xn+1 is equivalent to the dashed arrow with two homotopies filling the
triangles. The lower-right triangle can always be filled by composing some ∗ → Sn with the
square, so the triviality of [o(xn)] ∈ πn(Xn+1) suffices. Now assume the triviality of [o(xn)]. The
space of fillers is equivalent to the space of nullhomotopies of Sn → NnX. This is Ωn+1(NnX).

Remark 4.1.8. By a similar argument one can show that, for any X• satisfying Xm = ∗ for
m ̸= n, the totalization is either empty or ΩnXn (cf. [Lur17, Corollary 1.2.4.18] for the stable
variant).

4.1.4 Half-central structure on S⃗1

Now we specialize to our case of interest:

Notation 4.1.9. Let V = PrLω, A = ∞Cat?∗ , D = (−)◦ : A → A be the total dual (monoidal)
functor, which flips the cells of all dimensions (Proposition 2.4.17). We continue to denote the
associated bimodule DA by D.

The goal of this section is to prove the following:

Theorem 4.1.10. S⃗1 ∈ A and Σ ≃ S⃗1 ? (−) ∈ EndRModA(A) uniquely lifts along the forgetful
functor ZV(A,D)→ EndRModA(A) ≃ A.

Corollary 4.1.11. The category CatSp and the functor Σ∞ :∞Cat∗ → CatSp lifts to BMod∞Cat∗(Pr
L
ω).

Unpacking the obstruction theory of the totalization of cosimplicial objects, we see that the
data of half-central structure on S⃗1 amounts to the following:

• An object S⃗1 ∈ ωCat∗,

• A natural isomorphism τX : S⃗1 ?X
∼−→ X◦ ? S⃗1,

• A natural homotopy θX,Y filling the triangle

X◦ ? S⃗1 ? Y

S⃗1 ?X ? Y X◦ ? Y ◦ ? S⃗1

X◦?(τY )(τX)?Y

τX?Y

• A natural homotopy filling the 3-simplex

S⃗1 ?X ? Y ? Z X◦ ? Y ◦ ? Z◦ ? S⃗1

X◦ ? S⃗1 ? Y ? Z X◦ ? Y ◦ ? S⃗1 ? Z

whose boundary is filled by homotopies τ and θ.

• and so on.

It turns out that all the vertices live in contractible components, so there is no room for any
nontrivial choice of the coherence data at each step after providing the natural equivalence τ .
With this in mind, we have the following more direct argument:
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Lemma 4.1.12. Let X = X• be a cosimplicial groupoid and x ∈ X0 be a point. Suppose that

(1) the connected component of (d0)n(x) ∈ Xn is contractible for all n ≥ 0, and

(2) there is a path d0x ≃ d1x ∈ X1.

Then the fiber of Tot(X•)→ X0 over x is contractible.

Proof. By left Kan extension along {[0]} ↪→ ∆, the data of ∗ x−→ X0 is equivalent to a natural
transformation x : I → X, where I is the tautological cosimplicial set ∆ ↪→ Set ↪→ S. In this
way, the map Tot(X•) → X0 is corepresented by the map I → ∗ to the terminal cosimplicial
groupoid, i.e., the groupoid of the lifts of x is equivalent to that of factorizations I → ∗ → X
of x. Consider the image factorization I ↠ Y • ↪→ X•, so Y n ⊂ Xn is the union of connected
components of the images of x by the structure maps X0 → Xn. The conditions (1), (2)
ensures Y •

∼−→ ∗, so the factorization I → ∗ ≃ Y • → X• gives the canonical point in the fiber
of Tot(X•)→ X0 over x. Conversely, any factorization I ↠ ∗ → X uniquely factors through Y
and is an image factorization, so the groupoid of such factorizations is contractible.

In the following, let µn generically denote the n-ary multiplication map of algebra objects
(in particular, monoidal categories).

Lemma 4.1.13. For n ≥ 0, the connected component of Σ ◦ µn in the underlying groupoid
MapV(A

⊗n, A) of HomV(A
⊗n, A) = LFunω(∞Cat⊗n∗ ,∞Cat∗) is contractible.

We will prove the lemma later; let us first assume it and finish proving the theorem.

Lemma 4.1.14. There exists a (unique) equivalence of endofunctors τ : (−)? S⃗1 ∼−→ S⃗1?(−)◦.

Proof. The uniqueness follows from the n = 1 case of Lemma 4.1.13. The existence is Proposi-
tion 3.1.9.

Proof of Theorem 4.1.10. Apply 4.1.12 to X• = MapV(A
⊗•, A) with the cosimplicial structure

described in Remark 4.1.5. The conditions (1) and (2) are Lemma 4.1.13 and Lemma 4.1.14,
respectively.

Proof of Lemma 4.1.13. Consider the composition

j : □□×n → PSh(□□)⊗n →∞Cat⊗n
(−)+−−−→∞Cat⊗n∗ .

The first functor is the Yoneda embedding, the second is the tensor power of the localization
PSh(□□) → ωCat and the last is the base change along S → S∗ in PrL. From the universal
property of each functor, j induces a fully faithful embedding

LFunω(∞Cat⊗n∗ ,∞Cat∗) ⊂ LFun(∞Cat⊗n∗ ,∞Cat∗)

≃ LFun(∞Cat⊗n,∞Cat∗) ↪→ Fun(□□×n,∞Cat∗).

In particular, the connected component of F := Σ ◦ µn ∈ LFun(∞Cat⊗n∗ ,∞Cat∗) is equivalent
to that of Σ ◦ µn ◦ j ∈ Fun(□□×n,∞Cat∗). Now we have the following commutative diagram:

∞Cat∗ ⊗ · · · ⊗∞Cat∗ ∞Cat∗ ∞Cat∗

∞Cat⊗ · · · ⊗∞Cat ∞Cat Mon(∞Cat)

□□ × · · · ×□□ □□ Mon(Gaunt)

µn Σ

µn

(−)+
FreeE1

B

µn

j

FreeE1
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The lower-left square commutes by the characterization of the Gray tensor product. Free E1-
algebra functors restricted to □□ lands in the gaunt monoidal categories by the explicit formula
FreeE1

(□n) ≃
∐
k≥0 □

kn. Therefore the connected component of F in Fun(□□×n,∞Cat∗) is

equivalent to that of FreeE1
◦µn ∈ Fun(□□×n,Mon(Gaunt)). The latter is a (1, 1)-category, so the

connected component is equivalent to a delooping of a monoid in Set. We must show that the
(ordinary) group Aut(F ) of the invertible object of that monoid is trivial. We have the following
equalizer diagram of sets:

Aut(F )
∏
x∈□□×n AutMon(Gaunt)(Fx)

∏
x→y∈□□×n HomMon(Gaunt)(Fx, Fy).

We claim that for any x = (□k1 , . . . ,□kn) the group Aut(Fx) = Aut(FreeE1
(□k1+···+kn)) is

trivial. Note that the natural map AutGaunt(□m)→ AutMon(Gaunt)(Free(□m)) is a bijection; the
inverse is given by the restiction to the indecomposable part4. Now the lemma is reduced to
Lemma A.3.3.

4.2 The tensor product of categorical spectra

We are now ready to prove the main theorem, namely the existence and the universal property
of the tensor product of categorical spectra. With the half-central structure of S⃗1 at hand, it is
now a special case of the general result on the monoidal inversion of a central object. The part of
its proof relying on even more general facts on idempotent algebras is separated in Section 4.2.2.
The commutative case of the results of this section is well-known [Voe98][Rob15][Nik17][Lur17,
§4.8.2][CS, Lecture V], but the proof requires not completely obvious modification (e.g. see the
footnote of Proposition 4.2.2), so we will spend some pages spelling out the detail.

4.2.1 The main theorem

Recall that Theorem 4.1.10 allows us to lift the defining colimit diagram

∞Cat∗
Σ−→∞Cat∗

Σ−→ · · · → CatSp ∈ PrLω

to a telescope in the category of (∞Cat∗,∞Cat∗)-bimodules in PrLω:

A
Σ−→ D

Σ−→ A
Σ−→ D

Σ−→ · · · → AΣ = CatSp.

In particular, Σ∞ :∞Cat∗ → CatSp canonically lifts to a map of ∞Cat?∗ -bimodules. We denote
Alg(BModA(V)) by AlgA(V). We can now state and prove the main theorem:

Theorem 4.2.1. (1) S⃗1 ∈ ∞Cat∗ acts invertibly (from left and right) on the bimodule CatSp.

(2) The map Σ∞ :∞Cat∗ → CatSp exhibits CatSp as idempotent E0-algebra of BMod∞Cat∗(Pr
L
ω).

(3) CatSp admits a unique lift to AlgA(V). The lax monoidal forgetful functor BModA(V)→ V
induces the underlying presentably monoidal structure on CatSp.

(4) The monoidal category CatSp⊗ is the monoidal inversion ∞Cat?∗ [S⃗
−1]. That is, CatSp⊗

is the initial ∞Cat?∗ -algebra on which S⃗−1 acts invertibly.

4For a monoidal∞-category M, its indecomposable part can be defined as the pullback of indec(π0(≤0M)) ↪→

π0(≤0M)← M, where ∞Cat
≤0(−)−−−−→ S

π0−−→ Set are (product-preserving) left adjoints to the inclusions. Indecom-
posables are only functorial in monoidal equivalences.
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The theorem is a consequence of the following more general observations:

Proposition 4.2.2. Let V = PrLω
5 and let A⊗ ∈ Alg(PrLω) be a monoidal category (not nec-

essarily ∞Cat∗). Let s ∈ Z(A) be an object with a central structure (in particular τ : ls =
s ⊗ (−) ∼−→ rs = (−) ⊗ s), with which we regard ls : A → A as a morphism in BModA(V).

Let As := colim(A
ls−→ A

ls−→ · · · ) ∈ BModA(V) be its telescope. Assume moreover that
τs : s⊗ s→ s⊗ s is equivalent to ids⊗s

6. Then:

(1) The left- and right- actions of s ∈ A on As are equivalent and both invertible.

(2) The canonical functor η : A → As exhibits As as an idempotent E0-algebra object of
BModA(V). In particular, it uniquely lifts to an idempotent E1-algebra object in BModA(V).

(3) For any B ∈ Alg(V), the forgetful functor As
BModB(V)→ ABModB (resp. BBModAs

(V)→
BBModA(V)) is fully faithful with the essential image consisting of bimodules M on which
s acts invertibly from the left (resp. right).

(4) There is an inclusion AlgAs
(V) ↪→ AlgA(V) whose image is the A-algebras on which s ∈ A

acts invertibly from the both sides. As is initial among such A-algebras.

Remark 4.2.3. The author hopes that the following variants of the last claim is true.

(1) As is initial among objects of AlgA/ on which the image of s ∈ A acts invertibly.

(2) For any algebra object B ∈ Alg(PrLω), the induced map Fun⊗(As, B) → Fun⊗(A,B) is a
full subcategory inclusion. The image consists of those functors f : A→ B with f(s) ∈ B
invertible.

For now, we do not attempt to prove these claims.

Proof of 4.2.1. Apply 4.2.2 for A = ∞Cat?∗ , s = S⃗2. To check τS⃗2 : S⃗2 ? S⃗2 ∼−→ S⃗2 ? S⃗2 is

homotopic to the identity, it suffices to observe that the monoid of endomorphisms of S⃗4 =
B4 FreeE4

is FreeE4
=

⊔
n∈N E4(n)/Σn, so Aut(S⃗4) ≃ ∗.

Proof. (1) Its left (resp. right) action on As is given as the colimit of the telescope (in the
horizontal direction) of the following commutative squares:

A A

A A,

ls

ls

ls
α

ls

resp.

A A

A A

rs

ls

rs
β

ls

.

Here the natural equivalences α, β are provided by regarding ls as left (resp. right) module
morphisms, so β is just the associator βx : (s ⊗ x) ⊗ s ∼−→ s ⊗ (x ⊗ s), whereas α is the
composition of the central structure of the horizontal morphisms with the associator, i.e.,

αx : sb ⊗ (sa ⊗ x)
sb⊗τx−−−−→ sb ⊗ (x⊗ sa)

∼−→ (sb ⊗ x)⊗ sa
τsb⊗x←−−−− sa ⊗ (sb ⊗ x),

5We will only need that the monoidal structure on A commute with sequential colimits.
6This is a noncommutative variant of an argument usually attributed to Voevodsky but the way of complication

is quite different. The main point of Voevodsky’s argument was that when we want to invert an object s ∈ A
by telescoping (in a symmetric monoidal category), it suffices to check that the cyclic permutation (123) on s3

is homotopic to the identity. In our argument, this condition is trivially satisfied (we use double suspension to
begin with, and there is no nontrivial automorphism of s2). We use the telescope of left multiplications, which
would intuitively invert the left action of x, except that we need a central structure to make sense of it. The
right action is inverted essentially because it can be identified with the left action through the central structure,
and the triviality of transposition is used here again.
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where we wrote sa, sb to avoid confusion between s corresponding to the horizontal and
vertical arrows. Notice αx ≃ (τsb ⊗ x)−1 ≃ id; the second is by assumption and the first
via θs2b ,x (as in 4.1.4, but for s). So we have the factorization of the 2-cell:

A A

A A.

ls

ls lsf=id

ls

By the cofinality of N +1−−→ N, the map As → As that f induces is inverse to the map
induced by ls, so the left action of s is invertible.

It remains to verify that the right action is invertible. It suffices to show the existence
of the invertible 3-cell filling the following cylinder in V (subscript s of l, r are omitted)
because then its telescope exhibits that τ induces the equivalence between left- and right-
action on As:

A A

A A,

lr

l

⇐
τ

l
α

l

≃
A A

A A

r

l

r lβ
⇐
τ

l

The existence of the 3-cell can be verified as follows: unpacking the description of α as
above, it reduces to providing the following equivalence of 2-cells (unmarked equivalences
are associators):

(ll
lτ−→ lr ≃ rl rτ−→ ll) ≃ (ll

τl−→ rl ≃ lr τr−→ rr).

Applying the coherence of the center and the assumption on the right-hand side, we have

τ l(x) = τs⊗x
∼−−→
θs,x

(s⊗ s⊗ x τs⊗x−−−→ s⊗ s⊗ x s⊗τx−−−→ s⊗ x⊗ s) ≃ s⊗ τx ≃ lτx and similarly

τr(x) ≃ τx ⊗ s ≃ rτx, so we are done.

(2) The morphisms A⊗A As
η⊗As−−−−→ As ⊗ As and As ⊗A A

As⊗η−−−−→ As ⊗ As are the colimits of
the telescope along the endomorphism ls ⊗ As and As ⊗ ls, which are the left and right
action of s on As, so they are invertible. Any idempotent E0-algebra lifts uniquely to an
idempotent E1-algebra by Proposition 4.2.7.

(3) The unit transformation M → As ⊗AM is idempotent, so the free-forgetful adjunction is
a localization. The unit is an equivalence if and only if s acts invertibly on M from the
left.

Remark 4.2.4. If we start from ∞Cat∗ with the oplax smash product ?rev, the directed circle
S⃗1 ∈ ∞Cat∗ is still half-central. To see this, note that we have an equivalence op : ∞Cat⊗

∼−→
∞Cat⊗

rev

and similarly for ∞Cat∗ as objects of Alg(PrL). Along this equivalence, S⃗1 and

D are preserved because (S⃗1)op = S⃗1 and D ◦ op = co = op ◦ D. Consequently, they get
the transferred structure of monoidal involution and a half-central object, so can also form a
monoidal structure on CatSp by inverting S⃗1 of ∞Cat?

rev

∗ . Using the universal property, it is
the image of ∞Cat?∗ → CatSp⊗ ∈ Alg(PrL) under the reversal involution on Alg(PrL).

Remark 4.2.5. The non-commutativity is somewhat unfortunate, given that many constructions
in algebraic geometry rely on the commutativity of algebra. The author does not know if there
is a reasonably undestructive localization to a commutative (or at least E2) tensor product.
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Conjecturally, the tensor product of categorical spectra with adjoints considered in Chapter 6
promotes to a (framed) E2-structure

7. The variant of the theorem for ∞Cat with the cartesian
product and CatSpcn instead of CatSp is true for a formal reason (namely, CMon is idempotent
in PrL [GGN16]).

Also, note that the noncommutativity of the Gray tensor product is not too uncontrolled;
there is a duality involution that reverses the tensor: Xop ⊗ Y op ≃ (Y ⊗X)op, in other words,
it is a ∗-algebra in PrL. One sees that CatSp has the induced structure of ∗-algebra. Therefore,
to fully exploit the multiplicative structure of categorical spectra, the theory of categorical
∗-algebras seems to be a good language to develop.

4.2.2 Idempotent E1-algebras

If C is a symmetric monoidal category, [Lur17, Proposition 4.8.2.9] shows that the forgetful
functor CAlgidem(C) → AlgidemE0

(C) is an equivalence. We spell out (straightforward but not
completely obvious) verifications of the E1-variant of the related statements. Let C⊗ be a
presentably E1-monoidal category with the unit 1.

Definition 4.2.6. An E0-algebra η : 1 → E in C is said to be idempotent if the maps E ≃
1⊗E η⊗E−−−→ E⊗E and E ≃ E⊗1 E⊗η−−−→ E⊗E are equivalences. An E1-algebra E is idempotent if
the multiplication map E⊗E → E is an equivalence, or equivalently, the underlying E0-algebra
is idempotent.

By definition, an E0-algebra η : 1 → C is idempotent if and only if the functor LlE =
E⊗(−) : C→ C is a localization (as in [Lur09b, Prop. 5.2.7.4]). Notice the monoidal equivalence
C ≃ EndRModC(PrL)(C); this implies that Alg(C) is equivalent to the category of (right-)C-linear
monads on C. Since the latter is equivalent to the category of idempotent E0-algebras in C by
LlE ↔ E, we obtain the following equivalence:

Proposition 4.2.7. The forgetful functor AlgidemE1
(C)→ AlgidemE0

(C) is an equivalence.

Note that we automatically have E⊗η ≃ η⊗E because both are inverse to the multiplication
map E ⊗ E → E.

Remark 4.2.8. If C is given a symmetric monoidal structure, any idempotent E1-algebra auto-
matically upgrades to an E∞-algebra, so this section is only relevant if C itself is noncommuta-
tive. This observation also implies that S ↪→ nCat is not idempotent in PrL for n ≥ 0 because
they have noncommutative monoidal structures (namely, the lax Gray tensor products) on these
categories, and similarly for Σ∞+ : S→ CatSp.

Remark 4.2.9. As usual, one can moreover show that the above equivalence AlgidemE1
(C) →

AlgE0
(C) is an equivalence of posets. To see this, suppose there exists an E0-algebra map

f : A → B between idempotent E1-algebras. We wish to show HomE0
(A,B), HomE1

(A,B)

are both contractible. Since ηB ⊗ B ≃ (1 ⊗ B ηA⊗B−−−−→ A ⊗ B f⊗B−−−→ B ⊗ B) is an equivalence,
B is a retract of A ⊗ B and therefore LlA-local, i.e., B ≃ A ⊗ B′ for some B′. Moreover,

(B
ηA⊗B−−−−→ A⊗B) ≃ (A⊗B′ ηA⊗A⊗B

′

−−−−−−−→ A⊗A⊗B′) is an equivalence. Now consider the square
(ηA : 1→ A)⊗(f : A→ B); the diagonal is (ηA⊗B)◦f ≃ (A⊗f)◦(ηA⊗A) ≃ (A⊗f)◦(A⊗ηA) ≃
A⊗ ηB , so we have a canonical contraction f ≃ (ηA ⊗B)−1 ◦ (A⊗ ηB), i.e., HomE0

(A,B) ≃ ∗.
The symmetric argument implies B ≃ B ⊗ A, so B lies in AlgE1

(ACA) ⊂ AlgE1
(C) (notice the

inclusion (ACA)⊗ ⊂ C⊗ is a map of (nonsymmetric) operads and is nonunital monoidal functor).
It follows that HomAlgE1 (C)

(A,B) is contractible because A is initial (tensor unit) in AlgE1
(ACA).

7The author thank Mayuko Yamashita and Thomas Blom for suggestions.
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Proposition 4.2.10. Let E be an idempotent E1-algebra. Then

(1) The forgetful functor LModE(C)→ C (resp. RModE(C)→ C) is an equivalence to the full
subcategory EC (resp. CE).

(2) the forgetful functor BModE(C)
⊗ → C⊗ is an equivalence to the full suboperad (ECE)⊗ ⊂

C⊗.

Proof. We spell out the left module case. The unit law M ≃ 1 ⊗M
ηE⊗M−−−−→ E ⊗M

a−→ M
implies M is a retract of E ⊗M , so M is LlE-local and therefore ηE ⊗M = ηE ⊗ E ⊗M ′ (for
some M ′) is an equivalence. This means a, the counit map of the free-forgetful adjunction, is

also an equivalence. Also, on these local objects, the unit map E ⊗X η⊗E⊗X−−−−−→ E ⊗ E ⊗X of
the free-forgetful adjunction is equivalence, so the adjunction induces the stated equivalence. A
similar argument for bimodule performed componentwise proves the second claim.

4.3 Basic properties of the tensor product

The goal of this short section is to discuss explicit descriptions of the tensor product and internal
homs. We will also show that the tensor product behaves additively on the category level and
connectivity and obtain comparison results of the tensor product with those of spectra and
symmetric monoidal categories.

4.3.1 Monoidal involutions and the half-central structure of F[1]

Unpacking the proof in the previous section, the following confirms that the directed circle S⃗1

acts on categorical spectra in an expected way.

Proposition 4.3.1. The left action of S⃗1 ∈ ∞Cat∗ on CatSp (which is also the left action of
F[1]) is canonically isomorphic to the shift functor.

Proof. As the limit of left modules, the left action lX : CatSp→ CatSp of X ∈ ∞Cat?∗ is given
by the limit of the following diagram:

∞Cat∗ ∞Cat∗ ∞Cat∗ · · ·

∞Cat∗ ∞Cat∗ ∞Cat∗ · · · ,

lS⃗1

lX

lS⃗1

lX

lS⃗1

lX

lS⃗1 lS⃗1 lS⃗1

where the commuting 2-cell is given by the half-central structure τX : S⃗1 ? X
∼−→ (X)◦ ? S⃗1.

When X = S⃗1, this morphism is in fact an identity since (S⃗1)◦ ≃ (S⃗1) and Aut(S⃗1 ? S⃗1) ≃
(FreeE2

(∗))× ≃ ∗. Therefore the diagram is equivalent to

∞Cat∗ ∞Cat∗ ∞Cat∗ · · ·

∞Cat∗ ∞Cat∗ ∞Cat∗ · · · ,

Σ

Σ

Σ

Σ

Σ

Σ

Σ

=
Σ

=
Σ

which induces the shift functor Σ = [1] : CatSp→ CatSp by definition.

Proposition 4.3.2. The total dual functor D = (−)◦ : CatSp → CatSp uniquely promotes to
an automorphism in Alg(BMod∞Cat(Pr

L)).
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Proof. By the universal property of CatSp =∞Cat?∗ [S⃗
−1], there is a unique involution CatSp→

CatSp of Alg∞Cat⊗(Pr
L) making the following diagram commute:

∞Cat?∗ ∞Cat?∗

CatSp⊗ CatSp⊗.

D

Σ∞ Σ∞

D̃

To see that the underlying functor of D̃ is the total dual functor defined in Definition 3.3.15, note
that D̃ is a ∞Cat⊗∗ -bimodule homomorphism, it must commute with the shift operators. Com-
posing it with the squares of the right adjoints to the above, we have the following commutative
diagram:

CatSp CatSp,

CatSp CatSp

∞Cat∗ ∞Cat∗.

D̃

Σn

Ω∞−n

Σn

Ω∞−n
D̃

Ω∞ Ω∞

D

This canonically factors through the same square for n = 0, so D̃ is the map induced by D in
each degree compatibly along the loops, i.e., it agrees with the total dual functor.

Proposition 4.3.3. The half-central structure on S⃗1 ∈ ∞Cat?∗ induces a canonical half-central
structure on F[1] ∈ CatSp⊗. In particular, we have X ⊗ F[1] ≃ Σ(X◦).

Proof. Note that the diagram we considered in the proof of Proposition 4.3.1 lifts to the following

diagram of A =∞Cat?∗ -bimodules (i.e, A⊗A(−)
Σ−→ D⊗A(−) applied to the definitional diagram

of CatSp ∈ BModA):

A D A · · · CatSp

D A D · · · D ⊗A CatSp.

lS⃗1 lS⃗1 lS⃗1 lF[1]

To show that D ⊗A CatSp ≃ DCatSp, note that by BModB = LModB(RModB) and so the
bimodule structure on B ∈ RModB is given by an algebra morphism B → B; that is, since
D⊗A CatSp forgets to CatSp as the right module over itself, it must be of the form (−)D′

CatSp
for some D′ : CatSp→ CatSp. To show D = D′, observe that it is an A-algebra homomorphism
satisfying Σ∞ ◦D′ ≃ Σ∞ ◦D.

Remark 4.3.4. Similarly, one can show that co, op-duals induce CatSp⊗
rev

→ CatSp⊗. Tracking
the duality of the base and bimodules is somewhat confusing and we do not attempt to precisely
write it down here.

4.3.2 Additivity on categorical levels

Just as the Gray tensor product of ∞-categories, the tensor product of categorical spectra
behaves additively on category levels.
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Proposition 4.3.5. For m,n ∈ Z ∪ {±∞}, the essential image of mCatSp ⊗ nCatSp under
the tensor product is (m + n)CatSp. Here the convention is ∞ + (−∞) = −∞. In particular,
0CatSp ⊂ CatSp is a monoidal subcategory and Sp ⊂ CatSp is a ⊗-ideal.

Proof. The category nCatSp is the colimit-closure of the set {Σ∞−i+ □j | 0 ≤ j ≤ n+ i or j = 0}.
Since D□j ≃ □j , we have Σ∞−i+ □j ⊗ Σ∞−k+ □l ≃ Σ∞−i−k+ (Dk□j) ⊗ □l ≃ Σ∞−i−k+ □j+l ∈
(n + m)CatSp. To see that it is exactly the essential image, observe that F[n] ∈ nCatSp and
(−)⊗ F[n] : mCatSp→ (m+ n)CatSp is an equivalence for any finite n.

Proposition 4.3.6. Sp ⊂ CatSp is an exponential ideal. In particular, the spectral localization
(or group completion) L : CatSp→ Sp uniquely promotes to a monoidal structure. The induced
monoidal structure agrees with the usual tensor product of spectra, so S is idempotent and L is
a smashing localization by S.

Proof. Let X ∈ Sp and Y ∈ CatSp. To show that [Y,X] is a spectrum, it suffices to check that it
is local for fi,j : Σ

∞−i
+ (Cj+1 → Cj) for any i, j ≥ 0. As Sp ⊂ CatSp is closed under limits, we may

assume that Y is of the form Σ∞−k+ Y ′, so Y ⊗ fi,j is of the form Σ∞−i−k+ Di(Y ′)⊗ (Cj+1 → Cj)
which is an L-equivalence because S ⊂ ∞Cat is an exponential ideal [Cam23b, §3.2]. Similarly,
JY,XK is a spectrum, so Sp is an exponential ideal. It follows that there exists a unique monoidal

structure on Sp promoting L to a monoidal localization. Since Σ∞Sp : S∗ ↪→∞Cat∗
Σ∞

−−→ CatSp
L−→

Sp is monoidal, the induced monoidal structure on Sp is the usual tensor product. Now observe
Hom(L(Z ⊗ Y ), X) ≃ HomCatSp(Z, [Y,X]) ≃ HomSp(LZ ⊗ Y,X) for X ∈ Sp, so L(Z ⊗ Y ) ≃
LZ ⊗ Y . Plugging Z = F, we get LY ≃ S⊗ Y .

Warning 4.3.7. One should not expect that nCatSp ⊂ CatSp is an exponential ideal unless
n = ±∞. In fact, since [F[−n], X] ≃ F[n]⊗X, this internal hom increases the category level if
n is negative.

4.3.3 Additivity on connectivity

Recall we denoted the essential image of the embedding B∞−n : CMon(∞Cat) ↪→ CatSp by
CatSpn-cn and said its objects are n-connective. The following proposition shows that the tensor
product respects connectivity and in particular it restricts to what should be called the lax
tensor product of symmetric monoidal ∞-categories.

Proposition 4.3.8. The inclusion B∞ : CMon(∞Cat)
∼−→ CatSpcn ⊂ CatSp exhibits CMon(∞Cat)

as a monoidal subcategory. The monoidal structure is characterized by the fact that the functor
FreeE∞ :∞Cat→ CMon(∞Cat) promotes to a monoidal functor with respect to the Gray tensor
product of the domain. Moreover, the image of CatSpm-cn ⊗ CatSpn-cn ⊂ CatSp ⊗ CatSp under
the tensor product is CatSp(m+n)-cn.

Proof. The tensor unit F is connective. To prove the first statement, by [Lur17, Proposition
2.2.1.1] it suffices to check that for anyX,Y ∈ CMon(∞Cat), the tensor product (B∞X)⊗(B∞Y )
lies in the image of B∞. Write X ≃ colimi FreeE∞(Ci), Y ≃ colimj FreeE∞(Dj). Now we have

(B∞X)⊗ (B∞Y ) ≃ (colim
i

Σ∞+ (Ci))⊗ (colim
j

Σ∞+ (Dj))

≃ colim
i,j

(Σ∞+ (Ci)⊗ Σ∞+ (Dj)) ≃ colim
i,j

Σ∞+ (Ci ⊗Dj).

Since CatSpcn ⊂ CatSp is closed under colimits, the last colimit stays inside CatSpcn. The
characterization is also clear from this computation.
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Recall that by [GGN16] CMon ∈ PrL is an idempotent algebra and the associated symmetric
monoidal localization CMon(−) = CMon ⊗ (−) : PrL → PrL universally turns a presentable
category to a semiadditive presentable categories. In particular, it induces CMon : CAlg(PrL)→
CAlg(PrL) and CMon : Alg(PrL) → Alg(PrL). We denote the symmetric monoidal structure on
CMon(∞Cat,×) by ⊛ and the monoidal structure on CMon(∞Cat,⊗) by ⊗. The lax monoidal
functor id : (∞Cat,×) → (∞Cat,⊗) of Remark 2.4.15 induces a lax monoidal structure on
Mon(∞Cat)⊛ → Mon(∞Cat)⊗.

Corollary 4.3.9. The functor B∞ induces a functor RigE1
(∞Cat)→ AlgE1

(CatSp).

4.3.4 Fomulas for the tensor product and the internal hom

As an immediate consequence of Corollary 3.5.2, we have the following:

Corollary 4.3.10. Let X = (Xn), Y = (Yn) be categorical spectra. Then we have

X ⊗ Y ≃ colim
i,j

(Σ∞−i−j(DjXi) ? Yj) ≃ colim
n

(Σ∞−4n(X2n ? Y2n)).

and similarly for B∞−i in place of Σ∞−i, regarding Xi, Yj as symmetric monoidal categories.

Proof. Recall that X⊗Y ≃ (colimiΣ
∞−iXi)⊗(colimj Σ

∞−jYj) ≃ colimi,j Σ
∞−iXi⊗Σ∞−jYj ≃

colimi,j Σ
−jDj(Σ∞−iXi)⊗Σ∞Yj ≃ colimi,j Σ

∞−i−j(DjXi)?(Yj). The second part results from

restricting to the cofinal diagram of 2N diag−−−→ N× N.

Corollary 4.3.11. We have the corresponding formula for the internal hom of categorical spec-
tra: Ω∞−n[X,Y ] ≃ limk→∞[DnXk, Yn+k], where the internal hom on the right-hand side is
taken in either ∞Cat?∗ or ∞SMCat⊗.

Proof. We have the following natural equivalences for Z ∈ ∞Cat∗:

Map∞Cat∗(Z,Ω
∞−n[X,Y ]) ≃ MapCatSp(Σ

∞−nZ, [X,Y ])

≃ MapCatSp(colim
k

Σ∞−kXk ⊗ Σ∞−nZ, Y )

≃ lim
k

MapCatSp(Σ
∞−k−n(DnXk ? Z), Y )

≃ lim
k

MapCatSp(D
nXk ? Z, Yn+k)

≃ Map∞Cat∗(Z, limk
[DnXk, Yn+k]),

and similarly for Z ∈ ∞SMCat.
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Chapter 5

Absolute colimits in categorical
spectra

In this chapter, we begin our study of stability in categorical spectra. Understanding stability
is clearly important—the category CatSp should not exist in isolation, but it should be put
into a larger context of stable Gray-categories, just as the category Sp of spectra is a (univer-
sal) example of stable (1-)categories. Recall that stability for categories had many equivalent
characterizations:

Proposition 5.0.1 ([Lur17, Chapter 1]). The following conditions on C ∈ Cat are equivalent:

(1) C is pointed, has cofibers and the suspension functor is an equivalence.

(2) C is pointed, has fibers and cofibers, and a triangle is a fiber sequence if and only if it is a
cofiber sequence.

(3) C has finite limits and colimits, and a commutative square is a pushout if and only if it is
a pullback.

(4) C has finite limits and evS0 : Exc∗(S
fin,C) → C is an equivalence. Here Exc∗(A,B) ⊂

Fun(A,B) is the full subcategory of reduced excisive functors, i.e., functors that preserve
terminal objects and send a pushout square to a pullback square.

If these are satisfied, we say C is a stable 1-category. Moreover, if C is presentable, the stability
is equivalent to having a (necessarily unique) module structure over Sp⊗.

Knowing that all of these are equivalent is extremely useful; for instance, one checks the
minimalistic condition (1) and knows immediately that it has finite limits and colimits, and
they preserve both limits and colimits. We wish to put CatSp into a similar context. This can
be separated into two (interrelated) questions:

(1) What is a structure on a category C that puts it on the same stage as the category CatSp
of categorical spectra, even to discuss the stability?

(2) What are the appropriate analogs of the conditions listed above? Which generalizes well
and which does not?

In the discussion of (2), it seems reasonable that pointedness is kept as is and suspension is
replaced by its directed analog. This indicates that for (1), the underlying 1-category is not

61
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enough; we do not know any way to recover the suspension functor out of bare 1-category
structure on ∞Cat∗ or CatSp. We used either the fixed-point property under enrichment or the
Gray-module structure, i.e., Σ = S⃗1 ? (−). The former is not too common compared to the
latter, so we choose the latter; at least it is more handy in the presentable situation. Also, note
that we forego the monoidal structure because we would like to think of stability as a kind of
linearity. So, in the presentable context, either left modules or bimodules over ∞Cat⊗ seems to
be a good option1. For general categories, a reasonable guess for the relevant structure is that
of Gray-categories/algebroids (i.e., ∞Cat⊗-enriched categories); two are related via the functor

θ′A : LModA(Pr
L)→ Â-Cat of [Ste21, §4.2] (when A = S, it is the forgetful functor PrL ↪→ Ĉat).

Let us take this as an answer to (1) and move on to (2); from Theorem 4.2.1, we know

that CatSp is the universal module where S⃗1 acts invertibly, and a presentable ∞Cat⊗-module
admits a (necessarily unique) CatSp-module structure if and only if the S⃗1-action is invertible.
We moreover have the notion of tensoring for a general enriched category (which are particular
instances of weighted colimits), so the suspension is (if it exists) a well-defined operation for
any pointed Gray-categories. Summarizing the argument, we make the following preliminary
definition:

Pre-definition 5.0.2. A Gray-category C is stable if it has a zero object and “finite weighted
colimits,” and the suspension functor Σ : C→ C is an equivalence.

This has two problems: clearly, the first problem is that we do not know what finiteness is
appropriate for the weight; our prototypical example CatSp has all weighted colimits, so it will
not help us much. The second problem is that this is not a very useful form of stability. Even for
the classical stable categories, it is not so easy to show that other useful characterizations follow,
and naive imitation of argument in our case fails (mainly because of the failure of pasting law
for the directed pullbacks and pushouts). A fundamental problem with Proposition 5.0.1 is that
it depends on some clever choice of a generating class of finite colimits that behaves too nicely
for us to generalize. In fact, the naive analogs of (3)(4) (replacing (co)fiber by lax (co)fiber
and pushout/pullback by directed pushout/pullback) are false in CatSp, so the characterization
of stability using diagrams that happens to be both limit and colimit should be regarded as a
happy 1-categorical accident.

This suggests that, instead of searching for a minimalistic definition, we should find all
exactness property enjoyed by CatSp. For stable 1-categories, this question is asked in [Camb].
We take the viewpoint that stability allows us to recognize a finite colimit as a finite limit over
another (Sp-weighted) diagram: if J is a finite category, the colimit functor Fun(J, Sp) → Sp
is both limit and colimit-preserving, so it has both left and right adjoints. This left adjoint
is necessarily of the form X 7→ W ⊗ X for a diagram W : J → Sp, so the colimit functor is
also the limit functor weighted by W . In this case, we say the colimit is absolute; a J-indexed
colimit is preserved by any Sp-enriched functor between Sp-enriched categories. We may put the
limits and colimits in a symmetric situation by considering weighted colimits. Tensoring by an
enriching object is an example, in which case the absoluteness is equivalent to the dualizability
of the object. The abundance of dualizable objects, i.e., the Spanier-Whitehead duality is an
important motivation to introduce spectra. We may roughly summarize the circle of ideas
by saying that we may approach the stability by studying absolute colimits in CatSp. The
appropriate finiteness condition for the weight should be understood along the way, but for
now, it seems too early to conclude (note that we do not even know if all finite categorical
spectra are dualizable).

1In the bimodule case, we would not want S⃗1 to act randomly from the right, compared to the left action.
This indicates that we should ask for a ∗-bimodule-like compatibility. In terms of Gray-category, this should
imply that left-hom and right-hom enrichments (one is oplax) pass to each other by an appropriate duality. We
will not discuss this point further here.
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Instead, we start by collecting basic examples of absolute colimits. In Section 5.2, we will
show the absoluteness of directed pushouts. In this case, the weight is simple and strict enough
to allow explicit diagrammatic calculation. We will spend the first section spelling out basic
knowledge and examples of directed pushouts. We regard the directed pushout as a bootstrap
for constructing other absolute colimits. We will already observe some interesting consequences,
but the full strength of this result is yet to be explored.

5.1 Some weighted (co)limits in Gray-categories

5.1.1 Bimodules and weighted colimits

Let A ∈ Alg(PrL) be a presentably monoidal category. Our main example of interest is A =
∞Cat⊗ and CatSp⊗. For completeness, we treat weighted colimits of A-enriched categories, but
we work in a minimalistic generality; we only treat the case when the weights live in a presheaf
category base-changed from S, i.e., when they are indexed over unenriched categories. See e.g.
[Ste21, Chapter 5] and [Hin20] for more general discussion (the latter does not mention weighted
colimits, but treats the basic setup of Morita theory over a noncommutative base). See also
[Str83] for the original treatment of absolute colimits. Let I, J ∈ Cat be small categories. We
regard PShA(I) = Fun(Iop,A) ≃ PSh(I) ⊗S A as a A-bimodule in PrL. Let RModfreeA (PrL) ⊂
RModA(Pr

L) be the full sub 2-category spanned by the presheaf categories. The hom category
is given by

LFunA(PShA(I),PShA(J)) ≃ LFun(PSh(I),PShA(J)) ≃ Fun(I,PShA(J)) ≃ Fun(I × Jop,A).

Notice that this functor category admits a left A-module structure induced by that of PShA(J),
i.e., by pointwise tensoring on the value.

Definition 5.1.1. An (I, J)-bimodule, or a profunctor I −7→ J is a functor W : I × Jop → A.
Let ProfA := RModfreeA (PrL) denote the 2-category of (unenriched) categories and profunctors.

We also have an equivalence

Fun(I × Jop,A) ≃ Fun(Jop,PShA(I
op)) ≃ LFunA(PShA(J

op),PShA(I
op)).

We warn that PShA(I) ↔ PShA(I
op) induces an equivalence Prof ≃ Profop, so to avoid confu-

sion, we talk about adjunction in this category only after embedding Prof into RModA(Pr
L).

Let C be a left A-module. Consider the functor

I × Iop × J × Fun(J,C)
I(−,−)×ev−−−−−−−→ S× C→ A× C→ C.

By passing to adjoint, we have a functor Iop × J → Fun(Fun(J,C),Fun(I,C)), which factors
through LFun(Fun(J,C),Fun(I,C)). When C is an A-bimodule (resp. A-algebra), it moreover fac-
tors through the hom category LFunA(Fun(J,C),Fun(I,C)) in RModA(Pr

L) (resp. LFunC(Fun(J,C),Fun(I,C))
in RModC(Pr

L)). In any of these cases, the left A-module structure on C induces that of
LFun(Fun(J,C),Fun(I,C)) by pointwise tensoring on the value, so we may uniquely extend the
functor to that of left A-modules2:

Fun(I × Jop,A)→ LFun(Fun(J,C),Fun(I,C)).

2Notice the close analogy with the matrix calculus; a profunctor corresponds to a matrix Wij : I × J → A,
where A is a base ring and I, J are some sets. For a left A-module M , we can define a multiplicationM⊕J →M⊕I

by a matrix W , by extending the action of the elementary matrix I × J → Hom(M⊕I ,M⊕J ); (i, j) 7→ ιj ◦ pri to
a left A-module homomorphism.
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The image of a bimodule W : I −7→ J is denoted by W ⊗ (−) or colimW (−) and call it the
colimit weighted by W . This functor adimts a right adjoint Fun(I,C) → Fun(J,C), which
we denote by [W,−] or limW and call the limit weighted by W . By adjunction and the
Yoneda lemma (we only need it for plain (∞, 1)-categories), this is a unique left A-module
functor Fun(I × Jop,A) → RFun(Fun(I,C),Fun(J,C))op extending (i, j) 7→ [J(j,−), evi(−)] :
I×J → RFun(Fun(I,C),Fun(J,C)). Here we give the transferred left A-module structure on the
codomain (by adjunction, an object a of A acts by precomposing the pointwise cotensor [a,−]
on Fun(I,C)).

For colimit, we often take I = ∗ so W : Jop → A is a presheaf. In this case, colimW :
Fun(Jop,A)→ LFun(Fun(J,C),C) is the unique left A-module morphism with the natural equiv-
alenceよ(j)⊗ F ≃ F (j); this is the so-called Yoneda reduction. [Ste21, Example 5.5.18] implies
that this definition of weighted colimits agrees with that of Stefanich. In this case, the weighted
limit C→ Fun(J,C) is simlpy the pointwise cotensor X 7→ (j 7→ [W (j), X]). The other extreme
case J = ∗ switches the role of limits and colimits: the functor Fun(I,A)→ LFunA(C,Fun(I,C))
takes W to X 7→ (i 7→W (i)⊗X). The weighted limit [W,−] : Fun(I,C)→ C is characterized by
the Yoneda reduction [I(i,−), F ] = F (i) and the fact that it turns colimits into limits, tensor
into cotensor ([a ⊗W,F ] ≃ [W, [a, F ]]). In particular, when I = J = ∗, the weighted limit and
colimit are tensor and cotensor by the left action of A on C.

For the study of stability, we are interested in the case when a weighted colimit W ⊗ (−) is
also a weighted limit [W ′,−]:
Definition 5.1.2. A weight W : I −7→ J is absolute if the weighted colimit functor W ⊗ (−) :
Fun(J,A) → Fun(I,A) admits a left adjoint in RModA(Pr

L). In this case, the left adjoint is
given by WL ⊗ (−) for some WL, which we call the left dual of the W .

In this case, we have an equivalence W ⊗ (−) ≃ [WL,−].
Remark 5.1.3. Enriched categories and profunctors are algebras and bimodules in a 2-category
spanned by Fun(X,A) for X ∈ S, or the category of enriched quivers in [Hin20] (the author
thank Stefanich for this suggestion). In this context, the absoluteness of the weight is equivalent
to the left dualizability as a bimodule.

Example 5.1.4. A profunctor ∗ −7→ ∗ is given by an object a ∈ A. This weight is absolute
precisely when a is left dualizable.

5.1.2 Directed pushouts and pullbacks

The goal of this section is to discuss a particular example of (partially lax) (co)limits of our
interest: directed pushouts and directed pullbacks3. We will also address some subtleties around
Gray-categories as we encounter them. Let us start with a minimalistic working definition of
directed pushout and pullbacks:

Definition 5.1.5. Let C be a presentable category with the action map ⊗ : Cat ⊗ C → C in
PrL and let [X,−] : C→ C denote the right adjoint to X ⊗ (−). The directed pushout of a span

B ← A→ C, denoted by B
−→
⨿A C, is the colimit of the following diagram in C:

A A

B □1 ⊗A C

0 1

3The traditional names are cocomma and comma constructions. Other popular names are lax pushouts and
lax pullbacks. The latter is somewhat more descriptive, but it has a problem of crashing the general notion of
(fully) lax limits and colimits. Lurie uses the term oriented fiber product for our directed pullback in [Lur, Tag
01KE].
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Dually, the directed pullback of a cospan B → D ← C, denoted by B
−→×D C, is the limit of the

following diagram in C:

B [□1, D] C

D D

ev0 ev1

A slightly more sophisticated definition is given by weighted (co)limits. Note that the

directed pushout and pullback naturally fit into a cospan B → B
−→
⨿A ← C and a span

B ← B
−→×D C → C. Let C ∈ LMod∞Cat⊗(Pr

L). When J is an 1-category, Fun(J,C) ∈ PrL will
mean the functor (1-)category to the underlying category C ∈ PrL. Let J = Λ2

0 = {1← 0→ 2}
be the walking cospan category and W•• : J

op × Jop → Cat be the weight given by the commu-
tative diagram

□0 □0 ∅

□0 □1 □0

∅ □0 □0,

=

= 0

0

1

1

=

=

Note that □0 0−→ □1 1←− □0 is canonically expressed as the colimit of the following diagram of
presheaves over Λ2

0:

□0 ⊗よ(1)← □0 ⊗よ(0) 0−→ □1 ⊗よ(0) 1←− □0 ⊗よ(0)→ □0 ⊗よ(2).

By the characterization of the weighted (colimits) using the Yoneda reduction and preservation
of colimits and tensoring, we see thatW•• is the weight for the directed pushouts and pullbacks.
More precisely, the weight induces the following adjunction between the category of spans and
cospans:

−→
⨿ : Fun(J,C) Fun(Jop,C) :

−→×
colimW

limW

⊥

Example 5.1.6. Directed pushouts and directed pullbacks specialize to many important con-
structions.

(1) The suspension functor Σ : C → C∗∗ is defined by ΣX := ∗
−→
⨿X ∗. When C = ∞Cat⊗,

it agrees with the original definition of the unreduced suspension thanks to Lemma 2.5.1.
When C =∞Cat?∗ (where X ∈ ∞Cat acts by X+ ? (−)), we have C = C∗∗ and recover the
reduced suspension by Proposition 3.1.9 and

S⃗1 ?X ≃ colim(0← S0 0−→ □1
+

1←− S0 → 0) ?X ≃ colim(0← X
0−→ □1

+ ?X
1←− X → 0).

(2) The hom functor C∗∗ → C is defined by (X;x0, x1) 7→ X(x0, x1) := {x0}
−→×X {x1}. Again,

by Corollary 2.5.5 it recovers the self-enrichment of ∞Cat.

(3) The loop functor Ω : C∗ → C∗ is (X,x) 7→ Ω(X,x) := X(x, x). It is equivalent to the

pointed internal hom [S⃗1,−] and recovers the loop functors on ∞Cat∗ and CatSp.

(4) The lax cofiber (resp. oplax cofiber) of f : X → Y ∈ C is
−→
cof f := ∗

−→
⨿X Y (resp.

←−
cof f := Y

−→
⨿X ∗).
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(5) Dually, the lax fiber (resp. oplax fiber) of a morphism f : X → Y ∈ C over ∗ y−→ Y is
−→
fib f := {y}−→×Y X (resp.

←−
fib f := X

−→×Y {y}). For X ∈ C∗, we let
−−→
path(X) =

−→
fib(X

id−→ X)

and
←−−
path(X) =

←−
fib(X

id−→ X).

(6) Additionally, we will use the following notations: −−→cone(X) :=
−→
cof(X

id−→ X), ←−−cone(X) :=
←−
cof(X

id−→ X), cyl(X) := X
−→
⨿X X ≃ □1 ⊗ X,

−→
cyl(X → Y ) = X

−→
⨿X Y ,

←−
cyl(X → Y ) =

Y
−→
⨿X X. I := −−→cone(S0) ∈ ∞Cat∗; it is the interval 0 → 1 with the basepoint 0. Notice

Iop = I◦ =←−−cone(S0). If C is pointed, we have −−→cone(X) ≃ I ?X and ←−−cone(X) ≃ Iop ?X.

For more specific examples, we give a few sample calculations of lax (co)fibers.

Example 5.1.7. (1) Σ∞I = B∞ FreeE∞(I) is the symmetric monoidal category freely gen-
erated by an object c and a morphism 1 → c, or in other words, a single E0-algebra. In
particular, we have an explicit description FreeE∞(I) = Env(E0) = Fininj (where Env is

the monoidal envelope of [Lur17, §2.2.4]). The cofiber map S⃗0 → I induces the inclusion
Fin≃ = Env(Triv)→ Env(E0) = Fininj.

(2) The Proposition A.3.5 shows ←−−cone(∆n) = ∆n+1 strictly, and [GHon] proves that this
pushout is weak. One could define orientals inductively by the cone construction starting

∆0. More generally, one can think of X
−→
⨿X⊗Y Y as the (lax) join of X and Y .

(3) Let Fin≃ → N≃ be the 0-truncation map in CMon(S) and let us (heuristically) compute

the lax cofiber 0⨿⃗Fin≃N≃ in∞SMCat or equivalently in CatSp. It is a symmetric monoidal
category that corepresents a morphism 1→ c, where c strictly commutes with itself with
respect to the symmetric monoidal structure. As we saw above, without strictness, this is
Fininj with objects c⊗n for n ≥ 0, but we force the Σn-action on c⊗n to be trivial, so the
hom groupoid Hom(c⊗m, c⊗n) is the quotient Hominj(⟨m⟩, ⟨n⟩)/Σn ≃ BΣn−m.

(4) Next, let us compute the lax fiber 0×⃗BN≃BFin≃. Note that this is equivalent to the
pullback of BN≃∗// → BN≃ ← BFin≃, where BN≃∗// is the fiber of ev0 : [∆1,BN]→ BN, or
the lax undercategory of BN≃ under the basepoint. However, BN is just a 1-category, so
the lax under category is the same as the undercategory, i.e., BN≃∗// = BN≃∗/ = N; we get

the ordered set of natural numbers because ∗ n−→ ∗ ∈ BN≃∗/ factors through another object

∗ m−→ ∗ if and only if there is k such that ∗ m−→ ∗ k−→ ∗ = ∗ n−→ ∗, i.e., m+ k = n, or m ≤ n.
The upshot is that the lax fiber in question is the fiber of N → BN≃ ← BFin≃. This can
be explicitly computed as a (2, 1)-category: the objects are the natural numbers and the

morphisms are given by Hom(m,n) = BΣn−m. Note that we obtained
−→
cof(B∞Fin≃ →

B∞N≃) ≃
−→
fib(B∞+1Fin≃ → B∞+1N≃) by computing the both hands sides independently.

We intuitively know that the directed pushouts and pullbacks are universal lax squares
extending spans and cospans. The next goal is to make this precise; since our target category
C (e.g. CatSp) is only a Gray-category and not an honest 2-category, we must be careful about
what we even mean by a lax square in C.

Remark 5.1.8. Recall the forgetful functor ι : ∞Cat ≃ ∞Cat×-Cat → ∞Cat⊗-Cat induced by
the lax monoidal functor id : ∞Cat× → ∞Cat⊗. It does not preserve colimits in general; for
instance, the “long” hom category of ι(C2 ∨C2) is C1×C1, whereas that of (ιC2)∨ (ιC2) is □2.
However, the following colimit-decomposition remains true in ∞Cat⊗-Cat.

ι□2 = ι∆{00,10,11} ∪ι∆{00,11}=σ({0}) ισ□
1 ∪ισ({1})=∆{00,11} ι∆{00,01,11}.
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Definition 5.1.9. A lax square in C is a functor ι□2 → C in ∞Cat⊗-Cat.

Using the colimit-decomposition of ι□2, we see that the data of the lax square ι□2 → C

which we depict as

A B

C D

α

is (functorially) equivalent to either of the following commutative diagrams:

A B

A □1 ⊗A

C D,

i0

i1

α

A B

[□1, D] D

C D

α

ev0

ev1

Remark 5.1.10. When we write a diagram with more than one cell of dimension at least 2, e.g.,

A B E

C D F,

α β

in C, it should be interpreted as a functor ι□2 ⊔ι□1 ι□2 → C, not ι(□2 ⊔□1 □2)→ C. The latter
would mean the existence of a well-defined pasting 2-cell β ∗α, but in Gray-category, one would
only get a 2-cell up to a natural transformation, i.e., a 3-cell. The author expects the existence
of the localization∞Cat⊗-Cat→∞Cat left adjoint to ι; one can think of this as the localization
by isomorphisms of various pasting theorems. If C is a ∞-category, then there is a well-defined
pasting β ∗ α.

The pasting law of the pullback and pushout squares is rather restrictive:

Proposition 5.1.11. In the following diagram, suppose that α is a directed pushout square.

A B E

C D F

G H

α β

≃

γ
≃

Suppose moreover that β, γ are invertible. Then

(1) β ∗ α is well-defined and is a directed pushout square if and only if β is a pushout square.

(2) γ ∗ α is well-defined and is a directed pushout square if and only if γ is a pushout square.

Similar assertions hold for directed pullback and pullback squares.

Proof. It follows from the pasting law of pullback squares together with the fact that the colimit
of C ← A→ □1 ⊗A← A→ B can be computed by forming two pushout squares.
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Notice that even when C = ∞Cat, the formation of directed pullback and directed pushout
squares is not 2-functorial. However, the half-central structure of S⃗1 gives rise to an exceptional
functoriality of suspensions. Note that when the underlying category of C is pointed (so C ≃
S∗ ⊗ C), the action of ∞Cat canonically factors through ∞Cat∗ by X ⊗ (−) = X+ ? (−).

Proposition 5.1.12. Let C be an object of LMod∞Cat∗(Pr
L). The the suspension functor induces

Σ : C→ C induces Map(ι□2,C)→ Map(ι(□2)2-op,C), which is depicted by A B

C D

α

 7→
 ΣA ΣC

ΣB ΣD

Σα


Proof. Using the half-central structure of S⃗1, we have Σ(□1

+?A) ≃ (S⃗1?□1
+)?A

∼−→ ((□1)op+ ?
S⃗1) ?A. This filps the weight ∗+

0−→ □1
+

1←− ∗+ to ∗+
1−→ □1

+
0←− ∗+.

The proposition is reflected already in the classical definition of triangulated categories.

Namely, this is the negative sign introduced when we rotate the triangle A
f−→ B

g−→ C
h−→ ΣA

to B
g−→ C

h−→ ΣA
−Σf−−−→ ΣB; the suspension converts a lax fiber sequence to an oplax fiber

sequence, so one flips the direction of homotopy back to lax fiber sequence by negating the
maps. Since we do not have negatives in our categorical setting, we must distinguish lax and
oplax fiber sequences.

5.2 Absoluteness of directed pushouts

The goal of this section is to prove the absoluteness of directed pushouts and begin the study
of absolute colimits in CatSp. Our basic strategy is to guess the dual weight and exhibit the
adjunction of weighted colimits directly. We will first prove the case of the cone construction,

i.e., 0
−→
⨿X X = I ? X. In this case, absoluteness is equivalent to the dualizability of Σ∞I.

Even though this is a special case of the main theorem, verification of the dualizability of I
nicely packages a part of its proof, so we give a separate treatment. After the main theorem, we
will list some immediate consequences. A corollary of particular importance is the equivalence−→
cof f ≃

−→
fibΣf for a morphism of categorical spectra f : X → Y (as observed for a particular

case in Example 5.1.7). Curious as it is, indicating both similarities and differences from the
stable 1-categories, it is also useful for computations; we will apply this to the study of TQFT
in the next chapter.

5.2.1 Σ∞I is dualizable

Recall the notation I :=
−→
cof(S0 → S0). In this section, we will show that Σ∞I is dualizable in

categorical spectra. To guess the dual object (Σ∞I)L, recall that we hoped to show that the

cone and the path category are equivalent up to shift: −−→cone(X) ≃
−−→
path(X[1]). This is equivalent

to I ⊗X ≃ [I, S⃗1 ?X] ≃ [Σ∞−1I,X], which suggests the following:

Proposition 5.2.1. Σ∞−1I is the left dual of Σ∞I with respect to the tensor product of cate-
gorical spectra.

Remark 5.2.2. The proposition should be eventually understood as an example of caetgorical
Atiyah duality and the degree of shift 1 accounts for the dimension of the interval. Observe that
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the proof even resembles the usual construction of the Spanier-Whitehead duality by embedding
a space into a sphere and contracting the neighborhood, although it is unclear how the idea
generalizes. This is a subject of the ongoing extension of this project.

Remark 5.2.3. Since the localization CatSp → Sp is monoidal, any monoidal duality in CatSp
gives rise to one in Sp. The duality of the proposition localizes to the trivial duality 0 ⊣ 0.

Remark 5.2.4. Suppose L is the left dual of R in CatSp (so that L ⊗ (−) ⊣ [L,−] ≃ R ⊗ (−)).
By composing the adjoint inverses [1] and [−1], one sees Σ±1L◦ ⊣ Σ∓1R and Σ±1L ⊣ Σ∓1R◦.
In particular, we have the four-periodic cycle

Σ∞I ⊣ Σ∞−1Iop ⊣ Σ∞Iop ⊣ Σ∞−1I ⊣ Σ∞I,

so Σ∞I is also right-dualizable.

Remark 5.2.5. Another clue for the dual object comes from the Steiner’s theory: λI is the
augmented chain complex Ze→ Z0⊕Z1 with the basepoint 0. The dual complex of the reduced
complex is Z1∨ → Ze∨ in degrees [−1, 0]. The dexterity of the dual determines the natural
positive part, giving the desuspension of the reduced augmented directed complex of Σ∞I(op).
It seems possible to have a nonconnective version of Steiner theory relating pointed augmented
complexes to a reasonably strict part of categorical spectra. A part of the difficulty would
be that our version of suspension is essentially not strict, let alone loop-free. In analogy to
the case of spectra, it should be rectified by passing to strictly commutative monoid objects,
or HN-modules. The strictification process seems moreover likely to have a Dold-Thom style
interpretation.

Proof. Let us first construct the unit and the counit of the duality.

(1) To define the counit ε : Σ∞−1I⊗Σ∞I → F, it suffices to define S⃗1⊗ε : Σ∞(I? I)→ F[1].
We define it as the Σ∞ of the map I ? I → S⃗1 ≃ BN depicted as follows:

00 10

01 11

7→
∗ ∗

∗ ∗.

0

0 1

1

The diagram shows the image of the atomic cells of□2 under the composition□2 ↠ I?I →
BN, which descends to the quotient I ? I because the restriction to {0} ⊗□1 ∪□1 ⊗ {0}
is trivial.

(2) To define the unit map η : F→ Σ∞I⊗Σ∞−1I = Σ∞I⊗S⃗−1⊗Σ∞I, we use the half-central
structure on S⃗1 to pull out the desuspension to the left. Namely, we define S⃗1⊗ η so that

S⃗1 ⊗ F S⃗1⊗η−−−→ S⃗1 ⊗ Σ∞I ⊗ S⃗−1 ⊗ Σ∞I
τI⊗id−−−−→
∼

Σ∞Iop ⊗ S⃗1 ⊗ S⃗−1 ⊗ Σ∞I ≃ Σ∞(Iop ? I).

is induced by the map S⃗1 → Iop ? I; l 7→ rs, where l is the generating loop of S⃗1 and r, s
are the 1-cells depicted as follows (we identify Iop with the interval 0→ 1 with the vertex
1 marked, so Iop ? I is the quotient of □2 by □1 ⊗ {0} ∪ {1} ⊗□1):

Iop ? I =

00 10

01 11.

s

r



70 CHAPTER 5. ABSOLUTE COLIMITS IN CATEGORICAL SPECTRA

We could have defined η by pulling out the desuspension to the right. The coherence data
of the half-central structure of S⃗1 verifies that two possible definitions are the same. To
see this, notice the following diagram canonically commutes:

S⃗1 ⊗ F S⃗1 ⊗ Σ∞I ⊗ S⃗−1 ⊗ Σ∞I Σ∞Iop ⊗ S⃗1 ⊗ S⃗−1 ⊗ Σ∞I Σ∞(Iop ? I)

F◦ ⊗ S⃗1 Σ∞Iop ⊗ S⃗−1 ⊗ Σ∞Iop ⊗ S⃗1 Σ∞Iop ⊗ S⃗−1 ⊗ S⃗1 ⊗ Σ∞I Σ∞(Iop ? I).

S⃗1⊗η

τF

τI

τI⊗S⃗−1⊗I τS⃗−1

η◦⊗S⃗1 τ−1
I

Taking the total dual of the bottom composite, we see that η is also characterized by that

F⊗ S⃗1 η⊗S⃗1

−−−→ Σ∞I ⊗ S⃗−1 ⊗ Σ∞I ⊗ S⃗1 −→ Σ∞I ⊗ S⃗−1 ⊗ S⃗1 ⊗ Σ∞Iop → Σ∞(I ? Iop)

is the Σ∞ of the loop r′s′ : S⃗1 → I ? Iop, where r′, s′ are the 1-cells depicted as

I ? Iop =

00 10

01 11.

s′

r′

Now we check the triangle identities, i.e., that the following compositions are equivalent to the
identities:

(1) Σ∞I
η⊗Σ∞I−−−−−→ Σ∞I ⊗ Σ∞−1I ⊗ Σ∞I

Σ∞I⊗η−−−−−→ Σ∞I,

(2) Σ∞−1I
Σ∞−1I⊗η−−−−−−→ Σ∞−1I ⊗ Σ∞I ⊗ Σ∞−1I

ε⊗Σ∞−1I−−−−−−→ Σ∞−1I.

For (1), consider the following diagram:

S⃗1 ⊗ Σ∞I S⃗1 ⊗ Σ∞I ⊗ Σ∞−1I ⊗ Σ∞I Σ∞Iop ⊗ Σ∞I ⊗ Σ∞I

S⃗1 ⊗ Σ∞I Σ∞Iop ⊗ S⃗1

S⃗1⊗η⊗I τI⊗id
∼

S⃗1⊗I⊗ε Iop⊗S⃗1⊗ε

τI
∼

The right square commutes, so the commutativity of the left triangle reduces to that of the outer
compositions. By definition, these are the Σ∞ of unstable maps S⃗1?I → Iop?I?I → Iop?S⃗1,
which in turn induced from the maps of cubes □2 → □3 → □2 by passing to quotients. Therefore
we may compute the compositions by tracing the assignments of the relevant atomic cells of the
cubes:

00 01

10 11

l
θ →

001

000 101

011

010 111

110

s

γ

rt

β

α

→
00 01

10 11

l′

θ′

The first map assigns l 7→ rs, l 7→ α ∗ β and the second map assigns s, t 7→ l′, r 7→ id∗,
β 7→ idl′ , α, γ 7→ θ′. The composition therefore assigns l 7→ l′, θ 7→ θ′ so it is equal to
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τI : S⃗1 ? I → I ? Iop ? S⃗1. Verification of (2) is similar. Tensoring S⃗1 from both left and
right, (2) is equivalent to identity if and only if the outer compositions of the following diagram
commute:

Σ∞I ⊗ S⃗1 Σ∞I ⊗ Σ∞I ⊗ Σ∞−1I ⊗ S⃗1 Σ∞I ⊗ Σ∞I ⊗ Σ∞Iop

Σ∞I ⊗ S⃗1 S⃗1 ⊗ Σ∞Iop.

I⊗η⊗S⃗1 I⊗I⊗τ−1
I

∼

S⃗1⊗ε⊗Σ∞−1I⊗S⃗1 S⃗1⊗ε⊗id

τ−1
I

∼

Using the second description of η, the top-right composition computes as Σ∞ of the unstable
map I ? S⃗1 → I ? I ? Iop → S⃗1 ? Iop induced from the □2 → □3 → □2, depicted as:

00 01

10 11l

θ →

010

000 011

110

100 111

101

t

r

β

γ

s

α

→
00 01

10 11

l′
θ′ .

The assignment of relevant cells are l 7→ rs, θ 7→ α ∗ β, t, s 7→ l′, r 7→ id∗, α 7→ idl, β, γ 7→ θ, so
they compose to τ−1I : l 7→ l′, θ 7→ θ′.

5.2.2 Directed pushouts are absolute

As before, we let J = Λ2
0 = (1 ← 0 → 2) be the walking cospan category and W : (Λ2

0)
op →

∞Cat∗ be the weight S
0 → □1

+ ← S0 for directed pushouts. Our goal is to show the absoluteness

of directed pushouts
−→
⨿ = colimW : Fun(J,CatSp)→ CatSp. Let us start with guessing the dual

weight by assuming it has a left adjoint as the right CatSp-modules. The following lemma is
useful:

Lemma 5.2.6. Let J be a (1, 1)-category enriched in finite sets. Then there is an adjunction

Fun(J,CatSp) CatSp
evi

よ(i)⊗(−)
⊥

in the category RModCatSp(Pr
L) (or even in BModCatSp(Pr

L)).

Proof. In general, the evaluation functor evi : Fun(J,CMon) → CMon admits a right adjoint
given by the right Kan extension X 7→ (j 7→ [MapJ(j, i), X]). If MapJ(j, i) are finite sets,
we have [MapJ(j, i), X] ≃ MapJ(j, i)⊗X by semiadditivity (with the opposite functoriality in
MapJ(j, i) via transposing matrices), so the right adjoint is colimit-preserving. The adjunction
of the lemma is obtained by tensoring CatSp from the right (note that CatSp is semiadditive so
it is an algebra over CMon).

Therefore, if there is a morphism L : CatSp→ Fun(J,CatSp) of right CatSp-modules that is
left adjoint to a functor colimW : Fun(J,CatSp)→ CatSp, by composing with the adjunction in
the above lemma, we see that evi ◦L must be given by tensoring the left dual of colimWよ(i).

Specializing to J = Λ2
0 and W = S0 0−→ □1

+
1←− S0, we see that ev0 ◦L = (0

−→
⨿F 0)L ≃ F[−1],

ev1 ◦L = (F
−→
⨿F 0)

L = Σ∞−1Iop, ev2 ◦L = (0
−→
⨿F F)L ≃ Σ∞−1I (see Remark 5.2.4). Therefore,

in order to prove the absoluteness of directed pushouts, we must prove the following:
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Theorem 5.2.7. There is an adjunction

CatSp Fun(Λ2
0,CatSp)

Σ−1(Iop←F→I)⊗(−)

colimW

⊥ .

in RModCatSp(Pr
L). In particular, the directed pushout (X ← Y → Z) 7→ X

−→
⨿Y Z is absolute.

Remark 5.2.8. One can also guess the right dual weight in a similar (but easier) manner. Namely,
we already know that X 7→ [W (−), X] is the right adjoint to colimW , even though we do
not know if it lies in RModCatSp(Pr

L). Since the (co)presheaf categories are free modules on
(co)representable functors, we can always cook up the best approximation of a functor by a
right CatSp-module morphism. In our case, it is simply X 7→ [W (−),F] ⊗X, so we only need
to know the right dual of each component of the weight. In our case, we will see that the right
dual of Σ∞+ □1 is Σ∞−1(I ∪S0 Iop).

Remark 5.2.9. It seems reasonable that the absoluteness follows formally from the above con-
sideration (because, roughly speaking, the right adjoint of the prospective left adjoint is an
absolute left Kan extension and should be computed pointwise), more generally for the colimit
over a finite poset with a weight whose colimits of corepresentable presheaves are dualizable.
We will not pursue this idea here and instead give a direct proof.

Proof. We exhibit the adjunction by spelling out the unit, counit, and checking the triangle
identities.

(1) To define the unit η : idCatSp → colimW (Σ−1(Iop ← F→ I)⊗ (−)), it suffices to define ηF;
for general X, we must define ηX = ηF ⊗X. Note that the codomain is computed as

Σ−1Iop
−→
⨿Σ−1F Σ

−1I ≃ Σ∞−1(I
−→
⨿S0 Iop),

where the category I
−→
⨿S0 Iop ≃ I ⨿S0 □1

+⨿S0 Iop ∈ Cat∗ is the free category on the graph

0 1

∗

□1

IIop
.

We define ηF : F → Σ∞−1(I
−→
⨿S0 Iop) as the map classifying the loop ∗ → 0 → 1 → ∗ :

S⃗1 → I
−→
⨿S0 Iop.

(2) Let X ← Y → Z ∈ Fun(Λ2
0,CatSp). We define the counit map εX←Y→Z as the vertical

composite of the following diagram:

Σ−1Iop ⊗ (X
−→
⨿Y Z) Σ−1F⊗ (X

−→
⨿Y Z) Σ−1I ⊗ (X

−→
⨿Y Z)

Σ−1Iop ⊗ (X
−→
⨿X 0) Σ−1(0

−→
⨿Y 0) Σ−1I ⊗ (0

−→
⨿Z Z)

Σ−1(Iop ? Iop)⊗X Y Σ−1(I ? I)⊗ Z

X Y Z.

≃ ≃ ≃

εIop εI
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(3) Now we must check the triangle identities. Since both our prospective left and right
adjoints are morphisms of right CatSp-modules, it suffices to check them for generators.

(i) One of the triangle identities, evaluated at F ∈ CatSp, is that (after a suspension)
the vertical compositions of the following diagram are the identities:

Iop F I

Iop ⊗ (Σ−1Iop
−→
⨿Σ−1F Σ

−1I) (Σ−1Iop
−→
⨿Σ−1F Σ

−1I) I ⊗ (Σ−1Iop
−→
⨿Σ−1F Σ

−1I)

Iop ⊗ (Σ−1Iop
−→
⨿Σ−1Iop 0) (0

−→
⨿Σ−1F 0) I ⊗ (0

−→
⨿Σ−1I Σ

−1I)

Iop ⊗ Iop ⊗ (Σ−1Iop) F I ⊗ I ⊗ (Σ−1I)

Iop F I

After another suspension and canceling the desuspension using the half-central struc-
ture of S⃗1, the compositions can be computed in ∞Cat∗:

S⃗1 ? Iop S⃗1 S⃗1 ? I

I ? (I
−→
⨿S0 Iop) (I

−→
⨿S0 Iop) Iop ? (I

−→
⨿S0 Iop)

I ? (0
−→
⨿ Iop Iop) (0

−→
⨿S0 0) Iop ? (I

−→
⨿ I 0)

I ? I ? Iop S⃗1 Iop ? Iop ? I

S⃗1 ? Iop S⃗1 S⃗1 ? I.

The middle column unpacks to S⃗1 → (I
−→
⨿S0 Iop) ≃ I⨿S0 □1

+⨿S0 Iop → ∗⨿S0 □1
+⨿S0

∗ ≃ S⃗1, which is evidently an identity. The left and right columns are equivalent to
the identity by the triangle identities of the duality of I and Iop.

(ii) The other triangle identity is that for any X ← Y → Z, the following composition is
the identity:

X
−→
⨿Y Z → Σ−1(I

−→
⨿S0 Iop)⊗ (X

−→
⨿Y Z)→ X

−→
⨿Y Z,

where the second map is the W -weighted colimit of the diagram in (2). Since
Fun(Λ2

0,CatSp) is generated by 0 ← 0 → F, F ← 0 → 0, F ← F → F as a right
CatSp-module, it suffices to check the identity for these three diagrams. The first
case unpacks (after a suspension) to that the composition

S⃗1 → I ⨿S0 □1
+ ⨿S0 Iop → (I ? I)⨿∗ ∗ ⨿∗ ∗ ≃ I ? I → S⃗1,
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or equivalently S⃗1 → I ⨿S0 □1
+ ⨿S0 Iop → I ⨿S0 ∗ ⨿∗ ∗ ≃ S⃗1 is an identity, which is

clear, and the second case is similar. The third case unpacks to, after a suspension,
the following composition is an identity:

S⃗1 ? □1
+ → (I ⨿S0 □1

+ ⨿S0 Iop) ? □1
+ → □1

+ ? S⃗1 τ−→ S⃗1 ? □1
+.

We can compute these maps explicitly by presenting these as (weak) quotients of
grid-shaped (gaunt) categories (vertical and horizontal directions are the first and
the second tensor component, respectively):

 ∗ ∗

∗ ∗
l0 l1α

 →



∗ ∗

00 01

10 11

∗ ∗

a0 a1

d

b0

β

b1

e

c0

γ

c1
δ


→


∗ ∗

∗ ∗

l′1

l′0

α′

 .

The first maps is li 7→ ci ◦ bi ◦ ai (i = 0, 1) and α 7→ δ ∗ γ ∗ β. The second map is
(a0, b0, b1, c1 7→ id∗), (a1, d 7→ l′1), (e, c1 7→ l′0), (β 7→ idl′1), (γ 7→ α′), (δ 7→ l′0), so
these two maps and the half-central structure map composes to the identity.

Let us now spell out some special cases of the theorem:

Corollary 5.2.10. There are adjunctions

CatSp Fun(□1,CatSp)
Σ∞−1(S0→I)⊗(−)

−→
cof

⊥ .

CatSp Fun(□1,CatSp)
Σ∞−1(Iop→I⨿S0I

op)⊗(−)

−→
cyl

⊥ .

In particular, lax cofibers and lax cylinders are absolute colimits.

Proof. The inclusion i : □1 ≃ {0 → 2} ↪→ {1 ← 0 → 2} = Λ2
0 induces the following adjunction

quadruple:

iL! ⊣ i! ⊣ i∗ ⊣ i∗ : Fun(Λ2
0,CatSp) Fun(□1,CatSp).

The leftmost adjoint iL! is the cobase-change functor (X ← Y → Z) 7→ (X → X ⨿Y Z); the
other three are restriction, left and right Kan extension. The left Kan extension takes X → Y
to X

=←− X → Y and the right Kan extension takes X → Y to 0 ← X → Y . Now, the first
claim follows by composing the adjunction of the theorm with i∗ ⊣ i∗, whereas the second follws
by composing that with iL! ⊣ i!.

Corollary 5.2.11. The 1-cube Σ∞+ □1 is dualizable. The left and the right duals are both
Σ∞−1(I ∪S1 Iop), i.e., the desuspension of the free spectrum on the pointed graph

∗ • .
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Proof. Compose the adjunction of the theorem with the adjunction

Fun(Λ2
0,CatSp) CatSp.

colim

∆
⊥

Corollary 5.2.12. Left and right dualizable objects are closed under shifts, tensor products, and
retracts. In particular, Σ∞−nX is dualizable for any X ∈ □̃. This includes when X ∈ □□ ,∆,Θ
by Corollary A.3.6.

Proof. By composition of adjunctions, if XL, Y L (resp. XR, Y R) are the left (resp. right) dual
of X,Y , then Y L ⊗XL (resp. Y R ⊗XR) is the left (resp. right) dual of X ⊗ Y . Note that X
is right (resp. left) dualizable if and only if [X,F] ⊗ Y → [X,Y ] (resp. Y ⊗ JX,FK → JX,Y K)
induced by the counit X ⊗ [X,F]→ F (resp. JX,FK⊗X → F) is an equivalence. This condition
is stable under retracts. Explicitly, the right and left dual of a retract of X is the corresponding
retract of XR = [X,F] and XL = JX,FK.

5.3 Extensions of categorical spectra

As an important corollary, we can define a lift of Barratt-Puppe sequence in Sp.

Theorem 5.3.1. There is the followinng diagram that depends functorially on f ∈ Fun(□1,CatSp):

X Y 0

0 Z ΣX

0 ΣY,

f

g

h

≃

Σf

where the left and bottom squares exhibits
−→
cof(f)

∼−→ Z
∼−→
−→
fib(Σf) and the top-right square is

commutative and bicartesian.

Definition 5.3.2. In the situation of the theorem, we say that Z is an extension of ΣX by Y
classified by f (or Σf). As usual, we let Ext(X,Y ) denote Map(X,ΣY ) ≃ Map(ΩX,Y ) ∈ CMon,
the (commutative monoid) groupoid of the extensions of X by Y .

Remark 5.3.3. Given a map f : X → Y ∈ Ext(ΣX,Y ), there is the transposed diagram of the

above with
←−
cof(f) ≃ Z ≃

←−
fib(Σf). We may say that Z is the coextension classified by f . There

is no reason to choose one over another; if Y → Z → ΣX is an extension of categorical spectra,
ΣY → ΣZ → Σ2X is a coextension.

Proof. Let g : Y → Z be the lax cofiber of f . Note that the right adjoint (Σ−1F→ Σ∞−1I)⊗X of
−→
cof : Fun(□1,CatSp)→ Fun(□1,CatSp) is also the weight of the lax fiber of the shift:

−→
fib(Σf) ≃

lim([I,ΣY ] → [F,ΣY ] ← [F,ΣY ]), so there is a canonical equivalence Z
∼−→
−→
fib(Σf). By

funtoriality applied to Y → 0, we see that Z
∼−→
−→
fib(Σf) → ΣX is the same map as the one

induced by (X
f−→ Y ) → (X → 0), so by Proposition 5.1.11, the sequence Y → Z → ΣX is a

bifiber sequence.

Remark 5.3.4. The theorem is surprising given the failure of the pasting law of directed pull-
backs; it suggests that the classical notion of fiber sequences splits into those of lax fiber, lax
cofiber, and bifiber sequences, and they appear 3-periodically when we rotate a triangle.
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Chapter 6

Applications to TQFT

One of the central motivations in the study of n-categories is the theory of functorial quantum
field theories, especially topological quantum field theories (TQFTs). The goal of this chapter is
to give a few sample applications of the theory of categorical spectra in this direction. We refer
the reader to [Lur09c] for a mathematical introduction. Let us only recall a rough definition
of TQFTs here. Let d ≥ n ≥ 0 be integers. An n-category of cobordisms or an (n − 1)-th
extended cobordism category roughly is the univalent completion of an n-algebroid consisting of
the following data:

• An object is a (d− n)-dimensional manifold (possibly with an extra structure).

• A 1-morphism from M0 to M1 is a (d − n + 1)-dimensional manifold W with boundary
equipped with the identification ∂W =M0⊔M1, whereM0 denotes the manifoldM0 with
the “reversed” structure. We call W the cobordism from M0 to M1.

• More generally, for k ≤ n, a k-morphism is a cobordism between (k − 1)-morphisms, i.e.,
a (d − n + k)-dimensional manifold with corners equipped with an identification of the
boundary with (d − n + k − 1)-dimensional manifolds corresponding to the source and
target (k − 1)-morphisms.

• An (n + 1)-morphism is a diffeomorphsim between the n-morphisms. More generally, k-
morphisms for k > n are diffeomorphisms and isotopies, or equivalently trivial cobordisms.

• The composition is given by gluing cobordisms along the shared boundary.

• The symmetric monoidal structure is given by the disjoint union of manifolds.

We often denote the cobordism category by BordSd−n,...,d where S indicates the relevant structure
on the manifolds. We will focus on the topological case, i.e., when S is a tangential structure
X ∈ S/BO(n), although it is possible to allow more elaborate geometric structures by working
over the site of manifolds. We note, however, that to match a structure on a manifold and that
of a boundary, we need to identify the boundary with its collar or germ (or at least its first
jet). A TQFT is a symmetric monoidal functor Z : BordSd−n,...,d → A into another symmetric
monoidal n-category, typically of algebraic flavor such as “the n-category of n-vector spaces”
over C.

An important feature of the cobordism category is the existence of duals and adjoints: every
object M admits a dual M , every morphism W : M0 → M1 admits a left and right adjoint
W :M1 →M0, and so on, up through (n− 1)-morphisms (note that it is not reasonable to ask

77
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for adjointability of all n-morphisms in an n-category, as the top-level morphism is adjointable
if and only if it is invertible). Consequently, a TQFT only lands on the sufficiently adjointable
cells of the target.

Let us say in general that a symmetric monoidal ∞-category is n-adjointful if every k-
morphisms for 0 ≤ k < n is both left and right adjointable (dualizable when k = 0). The
cobordism hypothesis states, in the largest generality, that the cobordism n-category is a free
n-adjointful symmetric monoidal n-category generated by certain generating data. This is, of
course, equivalent to classifying TQFTs. Only d = n case is systematically understood; this is
when the objects are 0-manifolds. Such cases are called fully extended, or fully local. We will
focus on the fully local cases, but note that the other cobordism categories can be described
as (d − n)-th loop of a fully extended cobordism category (with a modified structure S). The
full locality refers to the heuristic that we can cut global information on higher dimensional
manifolds (or a cobordism) into trivial pieces (0-morphisms). This suggests that the TQFT is
determined by the value at the (codimension d germ of) points. (The framed version of) the
cobordism hypothesis makes this intuition precise and tells us that the cobordism category with
d-framing is generated by a codimension d point. When d = 1, this translates to the fact that
one can uniquely interpret a string diagram; d > 1 can be thought of as a higher dimensional
analog of this fact.

We start this section with the study of n-adjointful categorical spectra and in particular
n-adjointful symmetric monoidal categories. It is a levelwise property CatSpn-adj ⊂ CatSp (in
the sense of Section 3.4) with a localization Ln-adj and it satisfies the following three properties:

(1) X is n-adjointful if and only if ΣX is (n+ 1)-adjointful.

(2) If X is an m-categorical spectrum and f : Y → Z is Ln-adj-equivalence, then X ⊗ f is an
L(m+n)-adj-equivalence.

(3) If X,Y are n-adjointful and X ↣ Z ↠ Y is a (co)extension, Z is also n-adjointful.

The first property is immediate, and the second and the third reduces to a formula expressing
□1 ⊗ (C1 → Adj) as a pushout of two copies of C1 → Adj and a copy of its suspension, where
C1 → Adj is the inclusion of the right adjoint into a walking adjunction category. A reader may
safely skip the proof if preferred.

Once this formal property is established, we will spend Section 6.2 translating the usual
cobordism hypothesis into the language of categorical spectra. This translation is formal and
superficial, but we point out that because 0-adjoint categorical spectra form a monoidal sub-
category, it is more convenient to shift the n-adjointful symmetric monoidal n-category C to a
0-adjointful 0-categorical spectra B∞−nC. Philosophically, this means we use the codimensional
indexing, putting the top level (i.e., the partition function) at the origin.

A real application of our theory is in Section 6.3. Here we apply our theory to the study of
successive extensions of the cobordism categories, which we see as a cobordism category with
singularities (a.k.a. defects). The equivalence in Theorem 5.3.1 is precisely the categorical crux
in generalizing the cobordism hypothesis to this setting.

We end with the short discussion of the cobordism hypothesis with stable tangential struc-
tures in Section 6.4, i.e., when points have infinite codimension. In this case, we will see that
the stably framed bordism∞-category is the tensor unit of the∞-adjointful categorical spectra.

6.1 Categorical spectra with adjoints

Let us start by recalling the definition of adjunction in higher categories. Let r : x→ y l : y → x
be morphisms in a (2, 2)-category K. We say a 2-cell η : idy → rl is the unit of an adjunction
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if there is another 2-cell ε : lr → idx satisfying the properties idr ≃ (rε)(ηr), idl ≃ (εl)(lη).
In this case, we say l, r are left and right adjoint of the adjunction, and ε is the counit of the
adjunction. Now let X be a general ∞-algebroid. A 1-morphism r : x → y in X admits a left
adjoint if it admits a left adjoint in the homotopy 2-category of X. If k ≥ 2 and x : Ck → X is
a k-morphsim with the (k − 2)-source sk−2 and (k − 2)-target tk−2, then x is said to admit a
left adjoint if it admits a left adjoint as a 1-moprhism in HomX(sk−2, tk−2). In this section, we
study categorical spectra where cells of dimensions in a range admit adjoints.

Let Adj denote the strict 2-category of walking adjunction [SS86]; it is a theorem of Riehl–
Verity that it is gaunt and corepresents a homotopy-coherent adjunction in (∞, 2)-categories;
we refer to [RV16, §3.1] for a detailed description as a simplicial computad. Here we only name
the atomic cells for reference; Adj has two objects 0, 1 and two atomic 1-cells r : 0→ 1, l : 1→ 0
(denoted −,+, u, f , respectively in the reference). There are two atomic 2-cells η : id1 → rl and
ε : lr → id0 corepresenting the unit and the counit, two atomic 2-cells α : idr

∼−→ (rε)(ηr) and
β : idl

∼−→ (εl)(lη) corepresenting the triangle identities, and the pattern continues, i.e., there
are two atomic n-cells α(n), β(n) corepresenting the “higher triangle identities.” The following
is the model-independent translation of the main results of [RV16, §4]:

Theorem 6.1.1. Consider the following subcategories generated by the atomic cells (generation
indicated by overline):

C1 = {r} ↪→ {r, l, ε} ↪→ {r, l, ε, η, α} ↪→ {r, l, ε, η, α, β, α(3)} ↪→ Adj.

Then the inclusion of the first three categories into Adj are epimorphisms and the last one is an
equivalence.

We denote the maps C1 → Adj classifying the morphisms r, l by the same name. The theorem
says r, l : C1 → Adj are epi, i.e., a homotopy coherent adjunction extending a prospective right
or left adjoint is unique if it exists.

Definition 6.1.2. Let d ∈ Z̄ := Z∪{±∞}. Let Sadj
d := {Σ∞−i+ σj l,Σ∞−i+ σjr | 0 ≤ j ≤ d+i−2}.

A categorical spectrum X is d-adjointful if it is Sadj
d -local, i.e., for any f ∈ Sadj

d , the induced map

Map(f,X) is an isomorphism. We let CatSpd-adj ⊂ CatSp denote the category of d-adjointful
categorical spectra. We also let dCatSpadj denote the intersection dCatSp ∩ CatSpd-adj.

In other words, a categorical spectrum X = (Xn) is d-adjointful if and only if any (j + 1)-
morphism of Xn has both left and right adjoints for j = 0, . . . , d + n − 2. Also note that, as a
symmetric monoidal category, Xn = ΩXn+1 automatically has duals for objects if d+n−1 ≥ 0.

Example 6.1.3. By definition, we have 0CatSpadj
∼−→ limCMon(nCat)dual, where CMon(nCat)dual ⊂

CMon(nCat) denotes the full subcategory of symmetric monoidal n-categories with duals in
the sense of [Lur09c]. Also, the functor B∞ restricts to the equivalence CMon(dCat)dual

∼−→
CatSpcn ∩ dCatSpd-adj. For any n < d, the intersection nCatSp ∩ CatSpd-adj is Sp.

Remark 6.1.4. Let d ∈ Z̄. The inclusion CatSpd-adj ↪→ CatSp admits a left adjoint Ladj
d , which

freely adds left and right adjoints to stable k-cells with k ≤ d− 1.

The following lemma plays a fundamental role in the study of adjunctions in higher categories.
The proof will be deferred to the end of the section.

Lemma 6.1.5. There is a pushout diagram of (both weak and strict) 3-categories:

σC1 ⊔ ∂□1 ⊗ C1 □1 ⊗ C1

σAdj ⊔ ∂□1 ⊗ Adj □1 ⊗ Adj,

ϕ⊔(r0⊔r1)

σr⊔∂□1⊗r □1⊗r
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where we label the arrows of □1 ⊗ C1 as

00 01

10 11

r0

a b

r1

ϕ

and the map r : C1 → Adj picks up the universal right adjoint.

Remark 6.1.6. Informally speaking, the lemma states that a morphism in the functor category
with lax natural transformation has a left adjoint if and only if each of the component cells
has a left adjoint. Applying ≤2(−), we recover [Hau21, Theorem 4.6]. The proof is also similar
(some mate calculus) but naturally, our full 3-categorical version is more complicated.

Recall that the class of maps inverted by a localization is characterized by being strongly
saturated : a class S of morphisms in a presentable category C is strongly saturated if it satisfies
the following three conditions [Lur09b, Definition 5.5.4.5]:

(1) S satisfies 2-out-of-3 property, i.e., if two of f, g, f ◦ g belongs to S, then so is the third.

(2) S is closed under cobase change, i.e., if f : X → Y ∈ S and

X Y

Z Y ⨿X Z

f

f ′

is a pushout diagram, then f ′ belongs to S as well.

(3) S is closed under colimits in Fun(□1,C).

Notice the last condition implies id∅ ∈ S, so by the second condition any isomorphism belongs
to S. For a set S, let S denote the smallest strongly saturated class containing S. These are
precisely the maps that get inverted by the localization C→ C[S−1].

Lemma 6.1.7. Let S be a class of morphisms in∞Cat and σ :∞Cat→∞Cat be the (unpointed)
suspension endofunctor. Then we have the following:

(1) σS ⊂ σS,

(2) If f : X → Y ∈ S, then σf ∨□1 : σX ∨□1 → σY ∨□1 ∈ σS and similarly for □1 ∨ σf .

(3) Let f : X → Y be a morphism in ∞Cat such that □1 ⊗ f ∈ {f, σf}. Then for any n ≥ 0,
the morphsim □1 ⊗ σnf belongs to {σnf, σn+1f}.

Proof. (1) We wish to show S ⊂ T = {f | σf ∈ σS}. We have S ⊂ T , so it suffices to show
that T is strongly saturated. The 2-out-of-3 property is clear. Note that σ : ∞Cat →
∞Cat takes a colimit diagram to a colimit diagram under σ∅, i.e., σ(colimλ∈ΛXλ) ≃
colimλ∈Λ◁(σXλ), where if λ = −∞ ∈ Λ◁ is the cone point we set X−∞ = ∅. In particular,
σ preserves weakly contractible colimits, so if f ′ is a cobase change of f ∈ T , then σf ′ is
also a cobase change of σf ∈ σS, so f ′ ∈ T . Lastly, if f ′ = colimλ fλ in Fun(□1,∞Cat)
and fλ ∈ T , the suspension σf ′ is computed by colimλ∈Λ◁(σfλ) with f−∞ := id∅. As
σfλ, σ id∅ ∈ σS, it follows that σf ′ ∈ σS, i.e., f ′ ∈ T .

(2) This is immediate from the pushout f ∨□1 := σf ⨿id∗ id□1 in σS.
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(3) Recall the pushout formula

□1 ⊗ σnf ≃ σ(□1 ⊗ σn−1f) ⊔σnf⊔σnf ((σ
nf ∨□1) ⊔ (□1 ∨ σnf))

of Corollary 2.5.3. By (2) we have σnf∨□1, □1∨σnf ∈ {σnf}, so it suffices to check σ(□1⊗
σn−1f) ∈ {σnf, σn+1f}. This follows by induction on n and (1) for S = {σn−1f, σnf}.

Combining Lemma 6.1.5 and Corollary 3.5.2, we obtain □1 ⊗ σnr ∈ {σnr, σn+1r}, so

Σ∞−i+ □1 ⊗ σ∞−j+ σnr ≃ Σ
∞−(i+j)
+ (□1 ⊗ σnr) ∈ {Σ∞−(i+j)+ (σnr, σn+1r)}.

Theorem 6.1.8. The graded monoidal structure {nCatSp ⊂ CatSp⊗}n∈Z̄ is compatible with the

localizations Ladj
n : nCatSp → nCatSpadj. More precisely, if f is a Ladj

n -equivalence and X is a

m-categorical spectrum, then f ⊗X and X ⊗ f are Ladj
m+n-equivalence. In particular, the tensor

product of categorical spectra localizes to ⊗adj : mCatSpadj ⊗ nCatSpadj → (m+ n)CatSpadj.

Proof. We must show that f ∈ Sadj
n and X ∈ mCatSp implies f ⊗ X,X ⊗ f ∈ Sadj

m+n. Since

for finite m,n, we have Σ−nSadj
n = Sadj

0 , Σ−mmCatSp = 0CatSp, so after shifts we may assume
(m,n) = (0, 0). Other cases reduce to (m,n) = (0,∞), (∞, 0), (∞,∞); the first two are special
cases of the third. Now asume (m,n) = (0, 0); the case (m,n) = (∞,∞) is similar. Since
Sadj
n and mCatSp are closed under duality involutions, using (A ⊗ B) ≃ (Bop ⊗ Aop)op, the

theorem reduces to proving X ⊗ Σ∞−iσkr ∈ Sadj
0 . Such X is closed under tensor products and

colimits. Note that 0CatSp is generated under colimits by Σ∞−n+ □n because {Ω∞−n : 0CatSp→

nCat
Map(□n,−)−−−−−−−→ S}n∈N is jointly conservative (note that Cn is a retract of □n). Consequently,

we may only check the case X = Σ∞−1□1 ⊗ Σ∞−iσkr ∈ Sadj
0 for 0 ≤ k ≤ i − 2, which follows

from Σ∞−(i+1)□1 ⊗ σkr ∈ {Σ∞−(i+1)
+ σkr,Σ

∞−(i+1)
+ σk+1r}.

Remark 6.1.9. We expect that the localized monoidal product is more commutative than the
original: if a category admits adjoints, passage to adjoints allows us to identify the category with
its various duality involutions. In particular, we likely have a natural isomorphism X ⊗L Y ≃
(X⊗LY )op ≃ Y op⊗LXop ≃ Y ⊗LX. Therefore, we conjecture that the localized tensor product
on 0CatSpadj and CatSpadj promotes to a (framed) E2-structure. In the latter case, there may
be some chances that it even promotes to a E∞-structure.

Corollary 6.1.10. n-adjointful categorical spectra are closed under (co)extensions.

Proof. Let X,Y be n-adjointful categorical spectra and f : Y → ΣX be a morphism and

Z =
−→
fib(f) = lim(0→ ΣX

ev0←−− [□1,ΣX]
ev1−−→ ΣX ← Y ), so that X → Z → Y is an extension of

categorical spectra. Since CatSpn-adj ⊂ CatSp is closed under limits, it suffices to show that ΣX,
[□1

+,ΣX] are also n-adjointful. ΣX is (n+1)-adjointful so in particular, n-adjointful. Moreover,

[□1
+,ΣX] is Sadj

n -local because Σ∞+ □1 ⊗ Sadj
n ⊂ Sadj

n+1 and ΣX is Sadj
n+1-local.

proof of Lemma 6.1.5. Let P denote the pushout (□1 ⊗ C1) ⊔σC1⊔∂□1⊗C1
(σAdj ⊔ ∂□1 ⊗ Adj).

Since r : C1 → Adj is an epimorphism, □1 ⊗ C1 → □1 ⊗ Adj and □1 ⊗ C1 → P are both
epimorphisms. Since the epimorphisms from □1 ⊗ C1 form a poset (they are subobjects in the
opposite category), to show P ≃ □1 ⊗ Adj in ∞Cat(□1⊗C1)/, it suffices to give a map in both
directions.

We first define P → □1 ⊗ Adj or equivalently the commutative square in the lemma. The
second component ∂□1 ⊗ Adj → □1 ⊗ Adj is induced from ∂□1 ↪→ □1. To define the first
component σAdj → □1 ⊗ Adj, we must show that the 2-cell ϕ : r1 ◦ a → b ◦ r0 given by
σC1 → □1 ⊗ C1 → □1 ⊗ Adj admits a left adjoint.
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• Let ψ denote the 2-cell C2 ↪→ □1 ⊗ C1
id⊗l−−−→ □1 ⊗ Adj and ϕL be the 2-cell of the mate

square of id⊗l:

ϕ =

00 00

10 01

11 11.

a

=

=
r0

r0

ϕ

r1
r1

b

=

=

ϕL :=

00 00

01 10

11 11.

r0

=

ε0
a

ψ

b

l0

r1

=

l1

η1

• We will exhibit ϕL ⊣ ϕ by defining E : ϕL ◦ ϕ → idr1◦a and H : idb◦r0 → ϕ ◦ ϕL and
checking the triangle identities. Let id⊗ε, id⊗η : □1 ⊗ C2 → □1 ⊗ Adj also denote the
corresponding 3-cell. We define

E :

00 00 00

10 01 10

11 11 11.

a

=

r0

=

a

ϕ

r1
r1

b

ε0

ψ
l0

r1

=

=

=

l1

η1

η1∗(r1∗(id⊗ε))
≡≡≡≡≡≡≡≡≡≡⇛

00 00 00

10 10

11 11 11.

a

= =

a

=

r1
r1

=

r1

=

=

=

l1

η1

ε1

∼
≡≡≡≡⇛
α−1∗a

idr1◦a,

H : idb◦r0
∼
≡≡⇛
b∗β

00 00 00

01 01

11 11 11.

r0

=

ε0

=

=
r0

r0

b

l0

=

=

η0

b

= =

((id⊗η)∗r0)∗ε0
≡≡≡≡≡≡≡≡≡≡⇛

00 00 00

01 10 01

11 11 11.

r0

=

ε0
a

=

=
r0

r0

ψ

b

l0
ϕ

r1
b

=

l1

=

η1

The triangle identities are given similarly by the 4-cells corresponding to id⊗α, id⊗β :
□1 ⊗ C3 → □1 ⊗ Adj composed with α0, α1, β0, β1.

Therefore there is an essentially unique map σAdj → □1 ⊗ Adj extending ϕ, which defines
P → □1 ⊗ Adj.

Next we define □1 ⊗ Adj → P . We must show that the canonical map r̃ : a → b in [□1, P ]
corresponding to the square id⊗r : □1 ⊗ C1 → P admits a left adjoint. We define l̃ : b → a as
follows. Let ϕ : r1 ◦ a→ b ◦ r0 denote again the 2-cell corresponding to r̃, i.e., the composition

σC1
σr−→ σAdj→ P . Let ϕL : b ◦ r0 → r1 ◦ a denote the composition σC1

σl−→ σAdj→ P , which
is left adjoint to ϕ, exhibited by the adjunction data σAdj → P . Now we let l̃ : be the mate
square of ϕL:

l̃ :=

01 00

01 10

11 10.

l0

= η0 a
r0

b

ϕL

=r1

l1

ε1

We wish to show that l̃ is left adjoint to r̃. The unit map η̃ : idb → r̃◦ l̃ and the counit map ε̃ : l̃◦
r̃ → ida are defined as follows. We first define η̃. We must define a 2-cell C2 → Funlax(□1, P ), or
equivalently a map □1⊗C2 → P , extending the prescribed boundary (idb, r̃◦ l̃) : □1⊗∂C2 → P .
Now recall that we have a pushout of 3-algebroids □1⊗C2 ≃ (∂□1⊗C2⊔∂□1⊗∂C2

□1⊗∂C2)⊔∂C3

C3. We already know η̃|∂□1⊗C2
must be η0 ⊔ η1, which agrees with the given map on □1⊗ ∂C2.
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It remains to define C3 → P whose boundary is prescribed as follows (notice we reindexed the
vertices: a0 = 00, a1 = 10, b0 = 01, b1 = 11):

η̃ :

a0

b0 b0

b1 b1

r0

=

b

l0
η0

b

=

=

⇛

a0

b0 a1 b0

b0 a1

b1 b1,

a
r0l0

η0

b

b

ε1

ϕL

r1

ϕ
=⇒

=

l1
η1

This is given by the following 2-cell in HomP (b0, b1):

b br0l0 r1al0 r1l1r1al0

r1al0

br0l0

bη0 ϕLl0 η1r1al0

r1ε1al0α1al0

ηϕl0

ϕl0

The definition of the counit ε̃ is similar: the corresponding 3-cell C3 ↪→ □1 ⊗ C2
ε̃−→ P is given

by the following 2-cell in HomP (a0, a1):

l1r1a l1br0 l1br0l0r0

l1br0

l1r1a a

l1ϕ l1bη0r0

l1εϕ

l1br0ε0l1bα0

l1ϕ
L

ε1a

To verify the triangle identity, we must provide 3-cells α̃ : idr̃
∼−→ (r̃ε̃)(η̃r̃), β̃ : idl̃ → (ε̃l̃)(l̃η̃) in

Funlax(□1, P ). Similarly to the construction of unit and counit, the construction of α̃ reduces
to defining a 4-cell C4 → □1 ⊗ C3 → P with the domain

C3 → □1 ⊗ C−2 ∪{1}⊗C−
2
{1} ⊗ C3

idr̃ ∪α1−−−−−→ P

and the codomain

C3 → □1 ⊗ C+
2 ∪{0}⊗C+

2
{0} ⊗ C3

(r̃ε̃)(η̃r̃)∪α0−−−−−−−−→ P,
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The codomain unpacks to the following 2-cells in HomP (a0, b1):

br0 br0l0r0 br0l0r0

r1al0r0

r1a r1l1br0 r1l1br0l0r0 r1l1r1al0r0 r1al0r0 br0

r1l1br0

r1l1r1a r1l1r1a r1a

η1br0

bη0r0

bα0

η1br0l0r0

ϕLl0r0

br0ε0

r1η1al0r0

ηϕl0r0

α1al0r0

ϕ

η1r1a

r1l1bη0r0

r1l1br0ε0

r1l1ϕ
Ll0r0

r1l1bα0

r1l1r1aε0

r1ε1al0r0

r1aε0

ϕl0r0

r1l1ϕ
L

r1l1εϕ

r1l1ϕ

r1ε1a

ϕ

Then the 3-cell corresponding α is the following:
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The construction of β̃ is similar: it reduces to defining a 4-cell C4 → □1 ⊗ C3 → P with the
domain

C3 → □1 ⊗ C−2 ∪{1}⊗C−
2
{1} ⊗ C3

idl̃ ∪β1−−−−→ P

and the codomain

C3 → □1 ⊗ C+
2 ∪{0}⊗C+

2
{0} ⊗ C3

(ε̃l̃)(l̃η̃)∪β0−−−−−−−→ P.

One can unpack these into 2-cells in HomP (b0, a1) and explicitly construct the 3-cell as before.

6.2 The cobordism hypothesis

The goal of this section is to review the basic form of the cobordism hypothesis and translate it
to the context of categorical spectra.

Notation 6.2.1. Recall the straightening-unstraightening equivalence colim : Fun(BO(n),S)
∼−→

S/BO(n) which takes a groupoid X̃ with an O(n)-action to its quotient X ≃ X̃/O(n) = X̃hO(n).
This inverse is given by pulling back the universal O(n)-torsor ∗ → BO(n) along X → BO(n).
The data is also equivalent to the pair of a CW complex representing the groupoid X and the
real vector bundle ζ ≃ Rn ×O(n) X̃ of rank n with inner product, so we sometimes use the

notation X̃ and (X, ζ) interchangeably or let ζ denote the classifying map X → BO(n) itself.
These equivalent data will be called tangential structures. Despite the notation O(n), unless we
specifically refer to a vector bundle on a topological space, we will not need a topological group
structure on O(n); we only regard it as a group object in S.

Let m ≤ n and let M be a smooth m-dimensional manifold and X̃ be a tangential structure.
Let τM :M → BO(m) be the classifying map of the tangent bundle. A X̃-structure (or (X, ζ)-
structure) on M is a commutative diagram (in S) lifting the tangent classifier

X

M BO(n).

ζ

τM⊕Rn−k

Example 6.2.2. The most basic tangential structure is when X → BO(n) = id, X̃ = ∗. In
this case, X̃-structure is no additional structure, i.e., that of unoriented manifolds. Another
fundamental case is X = ∗ → BO(n), X̃ = O(n). In this case, X̃-structure gives a framing,
i.e., an identification of the tangent bundle with the constant bundle of the reference point of
BO(n). We will use superscript fr to indicate the framing write un (or omit the notation for
tangential structure) for unoriented manifolds.

Note that the groupoidification |Ck| of the cell Ck admits a canonical stratified manifold
structure as a quotient of the cube [0, 1]k by cylindrically collapsing the appropriate faces. In
particular, it comes equipped with a natural framing on every stratum in a compatible manner.
Such manifold realization extends to Θ in a functorial way. In the following, it is helpful to
think of them as secretly being extended to the “germ” beyond the boundary, so that the
objects restricted to the boundary come equipped with some “glue.” Roughly speaking, the n-

dimensional bordism category BordX̃n with X̃-structure is an n-category whose value on θ ∈ Θn
classifies finite submersive bundle of X̃-manifolds on |θ| whose X̃-structure is compatible across
stratifications. In particular, we have the following description of cells:
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(0) an object of BordX̃n is a finite set of points x = {x1, . . . , xn} of X equipped with identifi-
cation (ζ(xi) ≃ Rn) ∈ O(n).

(1) A k-cell for 1 ≤ k ≤ n from M0 to M1 is a k-dimensional X̃-manifold W together with

the identification of the boundaries (|Ck−1|
s−→ |Ck|)∗W ≃M0, (|Ck−1|

t−→ |Ck|)∗W ≃M1,
i.e., a cobordism from M0 to M1 with X̃-structures.

(2) When k > n, one may think of a k-morphism as a bundle on |Ck| which is induced
from that on |Cn| via the projection Cn → Ck; these are the trivial cobordism given
by cylinders (note however that the identification with the boundary has the freedom of
diffeomorphisms).

Moreover, we equip a symmetric monoidal structure on BordX̃n by disjoint unions of mani-
folds. Giving a precise definition of the symmetric monoidal (∞, n)-category of cobordisms is
a nontrivial task. At least one has to encode the compatibility of tangential structures across
different strata systematically, which may be done by considering collars or developing the the-
ory of stratified manifolds. We refer the reader to [CS19][AF17][GP23] for some constructions
in the literature. One should also note that the above naive definition usually ends up in a
non-univalent category; the underlying groupoid consists of trivial cobordisms (i.e., cylinders),
but there are nontrivial invertible cobordisms (e.g. nontrivial h-cobordism), so we usually apply
the univalent completion (this inverts the difference of smooth and PL cobordism category, for
instance).

Remark 6.2.3. One should define the cobordism categories in a way that it clearly depends
functorially on X ∈ S/BO(n). In particular, the framed bordism n-category Bordfrn admits an

action of Aut(∗ → BO(n)) = O(n). It is a folklore result that Aut(Bordfrn) = PL(n) except the
unknown case n = 4, but we will stick to the O(n)-action for simplicity.

Modulo the problem of definition, it is not difficult to show that the objects of cobordism
categories are fully dualizable; for k < n, the dual of a k-morphism is the same manifold with
the opposite X̃-structure and the unit and counits are given by a bent cylinder. The cobordism
hypothesis [Bae96] states the universal property of the cobordism category as the free symmetric
monoidal n-category with duals.

Hypothesis 6.2.4. The forgetful functor CMon(nCat)dual ↪→ CMon(nCat)
(−)≤0

−−−−→ S is corep-
resented by the framed Bordism category Bordfrn . In particular, the functor admits an action
of O(n), so the above functor canonically factors through the category of groupoids with O(n)-
action:

nSMCatdual S/BO(n) Fun(BO(n),S)

nSMCat S.

X 7→X̃
∼

ev∗

(−)≤0

Moreover, the left adjoint of CMon(nCat)dual → Fun(BO(n),S) sends the object X̃ to the n-

dimensional cobordism category BordX̃n , i.e., BordX̃n ≃ X̃ ⊗O(n) Bord
fr
n .

Remark 6.2.5. The second statement is equivalent to that X̃ → BordX̃n is colimit-preserving,
i.e., satisfies descent. This is an expectation from the locality of the fully extended cobordism
categories; one can cut a manifold into small bordisms and assemble information on the original
manifold from the restricted pieces. In the current situation, it essentially means that one
can assemble a tangential structure on a manifold from the local trivializations of the tangent
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bundle by asking for some properties/structures on the transition functions (and cocycles).
This perspective is central in [GP23]. The unoriented case is in some sense universal: by
unstraightening the framed bordism category as an O(n)-equivariant object Bordfrn : BO(n) →
nSMCat, one gets a cocartesian fibration Bordn := Bordunn =

∫
Bordfrn → BO(n); intuitively,

one obtains an unoriented bordism category from the framed bordism category by taking the
orbits under the change of framings. All the other cases are base changes of this fibration
along the structure map X → BO(n). One may think of this construction as the categorical
Madsen-Tillman spectrum.

Remark 6.2.6. The cobordism hypothesis is widely believed but there is no consensus on the
rigorous proof yet, as far as the author knows ([Lur09c] gives a sketch of a proof and [AF17] gives
a proof assuming a fundamental conjecture on factorization homology of solidly framed mani-
folds. [GP22] claims a rigorous proof and generalization to the geometric context, parametrized
by the cite of manifolds, but peer-reviewing is still in progress). From now on, we will work
conditionally on this formulation of the cobordism hypothesis.

Let us restate the cobordism hypothesis using categorical spectra. As the functor (Ω∞)≤d :
CatSpd-adj → CMon(dCat) lands in CMon(dCat)dual, the underlying groupoid functor (Ω∞)≤0 :
CatSp→ 0CatSpcn ≃ CMon(S)→ S lifts to Fun(BO(n),S).

Corollary 6.2.7. The functor Ω∞−d : CatSp0-adj
Ω∞−d

−−−−→ CMon(∞Cat)
(−)≤0

−−−−→ S is represented
by B∞−dBordfrd and factors throught S/BO(n). The left adjoint S/BO(n) → CatSp0-adj, formally

given by X 7→ X̃ ⊗O(n) L
adj
0 F[−n], admits a description as the cobordism categorical spectrum

B∞−dBordXd .

The translation is superficial, but in a sense, this is closer to the actual situation of the
cobordism hypothesis. Via the cobordism hypothesis, the framed cobordism n-category is often
described as the free symmetric monoidal category with duals generated by a point. However,
this point secretly looks like a germ of Rn and there are O(n)-worth of them. In the above,
this generator is placed in dimension −n. For example, targets of TQFTs become dimension-
independent in this way: for any d, one can write {B∞−dBordXd → C} to mean Bordd → dVectC,
where C is the categorical spectrum {nModC}n of [Ste21]. Moreover, we can organize the framed
cobordism categories of all dimensions into a single algebra in 0CatSp0-adj.

Corollary 6.2.8. The categorical spectrum
⊕

n≥0 B
∞−nBordfrn admits the structure of a tensor

algebra on B∞−1Bordfr1 in the monoidal category CatSp0-adj.

Proof. The first claim is equivalent to the cobordism hypothesis by applying the monoidal
localization L0-adj : CatSp→ CatSp0-adj to the tensor algebra Tens(F[−1]) =

⊕
F[−n].

Remark 6.2.9. Intuitively, the E1-rig structure on
⊕

n≥0 B
∞−nBordfrn is given by the disjoint

union and the cartesian product of manifolds. As soon as such cartesian product functor Bordfrm⊗
Bordfrn → Bordfrm+n is shown to be well-defined, the universal property shows that it is the unique
functor that sends the pair of reference codimension m and n point to the reference codimension
(m + n), but at the moment of writing the author is not aware of the way that avoids the use
of models of cobordism categories.

Remark 6.2.10. It is important to note that the cobordism hypothesis and its suggested proofs
have purely categorical consequences that can be stated without mentioning manifolds. One
is the O(n)-action on the underlying groupoid of a symmetric monoidal n-category with duals.
This action remains elusive without the framed cobordism hypothesis, which forces us to state
the cobordism hypothesis in two steps. Combining this with Theorem 6.1.8, we see that the
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groupoid of k-cells in a symmetric monoidal n-categories with duals admits an O(n− k)-action.
This fact was mentioned in [Lur09c, §4.3] without proof and used to formulate the cobordism
hypothesis with singularities.

Another categorical takeaway from Lurie’s proof sketch is an explicit finite-step pushout
description of L(−1)-adjF[−n] → L0-adjF[n]. Without using manifolds, it is not even clear if
the localization can be reached after finitely many pushouts. More precisely, in [Lur09c, §3.4]
Lurie describes the inclusion B∞−nBordn−1 → B∞−nBordn by introducing the index filtration:
B∞−nBordn−1 = F−1 ↪→ F0 ↪→ F1 ↪→ · · · ↪→ Fn = B∞−nBordn. Note that F−1 ↪→ Fn is the

reflection under the inclusion 0CatSp0-adj ↪→ 0CatSp(−1)-adj. Roughly speaking (at least non-
univalently), the category Fk has the same 0, 1, . . . , (n−1)-cells as Bordn−1 and allows the n-cells
(i.e., cobordisms) of Bordn that can be built up from handles of index at most k; here we see
the time coordinate of the cobordism as a (generalized) Morse function. Each step Fk−1 ↪→ Fk
is generated by the single O(n− k)-equivariant n-cell corresponding to the k-handle, subject to
the relation of cancellation of a (k− 1)-handle and a k-handle, as well as the “triangle identity”
of cancellation. The case k = 0 is particularly simple and encoded as the lax cofiber sequence:

Σ∞−1+ BO(n) B∞−nBordn−1

0 F0

Sn−1

Dn

In other words, F0 is an extension of Σ∞+ BO(n) by B∞−nBordn−1 classified by the standard O(n)-
action on the (n−1)-sphere Sn−1 ∈ MapS(BO(n),Ωn−1Bordn−1) ≃ Ext(Σ∞+ BO(n),B∞−nBordn−1).
Corollary 6.1.10 ensures that it does not mess up the previous levels of adjointfulness.

6.3 Cobordism hypothesis with singularlities

As we saw in the last section, the cobordism hypothesis gives a geometric description for the
categorical spectra with adjoints freely generated by a (O(n)-equivariant) groupoid of codi-
mension (−n)-cells. In this section, we study a generalization called the cobordism hypothesis
with singularities sketched by Lurie in [Lur09c, §4.3]; we describe the cobordism category with
certain kinds of conical singularities (aka. defects) allowed. It turns out that such cobordism
categories/categorical spectra arise as cell complexs in categorical spectra with adjoints, i.e., an
iterated extension of cobordism categorical spectra of different codimensions, and the singularity
types precisely classifies the extensions. The goal of this section is to make Lurie’s sketch of the
argument precise, filling the unproven categorical claims using our previous results. We first
make the following definition and later check that it qualifies for its name.

Definition 6.3.1. A cobordism categorical spectrum with singularities is a categorical spectrum
B0 that fits into the following sequence, where d ≥ 0, Xk ∈ S/BO(k), and Bk is an extension

(resp. coextension) of B∞−kBordX̃
k

k by Bk+1 when k is odd (resp. even):

0 = Bd+1 Bd Bd−1 · · · B1 B0

B∞−dBordX̃
d

d B∞−(d−1)BordX̃
d−1

d−1 B∞−1BordX̃
1

1 B∞BordX̃
0

0

A singularity datum for B0 is the sequence X⃗ = (X0, E0, . . . , Xd−1, Ed−1, Xd) where Bk is

classified by Ek ∈ Ext(B∞−kBordX̃
k

k , Bk+1). In this case, we denote BordX⃗d := Ω∞−dB0 and

call it the cobordism category of X⃗-manifolds.
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Remark 6.3.2. The distinction between extensions and coextensions are not essential under the
existence of adjoints. The above definition is designed to make the statement of Theorem 6.3.5
cleaner.

Remark 6.3.3. In the above definition, if Xd = ∅, we automatically have Bd = 0, Ed−1 = 0,
so deleting Ed−1, Xd from X⃗ does not change the resulting B0. Also, since Ek only depends
on the entries on the right, it makes sense to consider a singularity datum X≥k where Xi, Ei

for i < k are replaced by ∅ and 0, respectively. The resulting sequence of extensions is 0 ↣
Bd ↣ · · ·Bk =−→ · · · =−→ Bk, so Bk is also a cobordism categorical spectrum with singularities.
Combining the both consideration, when Xi = ∅ unless k ≤ i ≤ l, we may simply denote
the singularity datum X⃗ := X⃗ [k,l] := (Xk, Ek, . . . , El−1, X l) without a risk of confusion. Also

note that the categorical spectrum B0 is independent of the choice of d(≥ l), whereas BordX⃗d =
Ω∞−dB0 does depend on d.

Remark 6.3.4. By Corollary 6.1.10, Bk is 0-adjointful, 0-categorical and (−d)-connective. In

particular, Bk = B∞−dBordX⃗
≥k

d . By the cobordism hypothesis, one computes the Ext monoid
as follows:

Ext(B∞−kBordX̃
k

k , Bk+1) ≃ Map(X̃k ⊗O(k) L
0-adjF[−k],ΣBk+1)

≃ MapO(k)(X̃
k,Ω∞−k−1Bk+1).

where the O(k+1)-action on the codomain is restricted to O(k) by the canonical inclusion O(k) ⊂
O(k + 1). By definition, this classifies a O(k)-equivariant local system of (k + 1)-dimensional

X⃗≥k+1-manifolds. By abuse of notation, we continue to denote by Ek the corresponding local

system. If one gives a topological model of X̃k, this gives a bundle which continuously and

equivariantly assigns an X≥k+1-manifold Ek(x̃) to a point x̃ ∈ X̃k.

Theorem 6.3.5 (Cobordism hypothesis with singularities [Lur09c, Theorem 4.3.11]). Let d >

k ≥ 0, X⃗ = (Xk, Ek, . . . , Xd) be a singularity datum and X⃗ ′ = X⃗≥k+1. for any 0-adjointful
categorical spectrum A = (An), there is a cartesian square

MapCatSp(B
∞−dBordX⃗d , A) MapCatSp(B

∞−dBordX⃗
′

d , A) Z0

MapO(k)(X̃
k,AlgE0

(Ak+1)
≤0) MapO(k)(X̃

k, A≤0k+1) Ω∞−k−1Z0 ◦ Ek.

(Ek)∗

∋

∋

Proof. By Theorem 5.3.1, there is a (op)lax cofiber sequence B∞−k−1BordX̃
k

k → Bk+1 → Bk,
or a pushout diagram

B∞−k−1BordX̃
k

k Bk+1

Σ∞Dk+1I ⊗ B∞−k−1BordX̃
k

k Bk.
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Mapping into A and applying the cobordism hypothesis, one obtains

Map(Bk, A) Map(Bk+1, A)

MapkSMCatdual(BordX̃
k

k ,Ω∞−k−1[Σ∞I, A]) MapkSMCatdual(Bord
X̃k

k ,Ω∞−k−1A)

MapO(k)(X̃
k,Ω∞−k−1[Σ∞I, A]) MapO(k)(X̃

k,Ω∞−k−1A)

⌟

≃ ≃

Now observe Ω∞−k−1[Σ∞Dk+1I, A] ≃ Ω∞[Σ∞I,Σk+1A] so the underlying groupoid is Map∗(I,Ω
∞−k−1A) ≃

AlgE0
(Ak+1)

≤0.

6.4 Stable tangential structures

In this short section, we investigate CatSp∞-adj. This category exhibits behavior closer to the
category of spectra. Note that there is a sequence of cobordism categories along Bord(X,ζ)n →
Bord

(X,ζ⊕R)
n+1 . The colimit is the cobordism category BordXst of stably X-manifolds. This is a

natural example of an (∞,∞)-category that is not truncated at any finite level. We denote the
stably framed case (when X = ∗) by Bordfrst.

Theorem 6.4.1. Assume the cobordism hypothesis. Then L∞-adjF is the infinite cobordism
category B∞Bordfrst of stably framed categories. It is the tensor unit of the monoidal category
CatSp∞-adj, so for any X ∈ CatSp∞-adj, we have

ev∗ : B
∞Bordfrst, X

∼−→ X.

Remark 6.4.2. The last statement is an improved version of the stable cobordism hypothesis;
we usually recover only the underlying groupoid, but using the lax internal hom we can now
recover the whole category (or the categorical spectrum). An important consequence is that the
group O(∞) (or PL(∞), which is reasonably close to π∗(S)) acts on the category X itself. In
particular, one can form a quotient under this action, which should be thought of as categorical
Thom spectra.
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Appendix A

Steiner’s theory for strict
∞-categories

In this appendix, we give a summary of Steiner’s theory. It provides an equivalence between a
class of strict ∞-categories and a class of chain complexes with a kind of positivity structure.
It is a powerful computational tool in combinatorics of strict ∞-categories, especially when the
dualities involved in making a construction functorial are confusing.

Only in this appendix, a category without specification will mean a (1, 1)-category,
not an (∞, 1)-category. References include [Ste04], [Ara+23], [AM20], [OR23].

Remark A.0.1. A strict∞-category X, as defined in Definition 2.1.1, admits the following more
explicit description (cf. Remark 2.1.6):

(1) for each integer n ≥ 0 a set Xn, called the set of n-cells,

(2) for each p > q ≥ 0 a structure of a category with objects Xq and morphisms Xp, i.e.,

(i) the (q-)source and the (q-)target maps sq, tq : Xp → Xq,

(ii) the identity map ip : Xq → Xp,

(iii) the composition map ∗q : Xpsq
×Xq tq

Xp → Xp satisfying associativity and unitality,

which are compatible in the sense that for p > q > r ≥ 0 the above data defines a 2-category
structure on (Xp, Xq, Xr), i.e., they satisfy the globularity conditions spsq = sp = sptq, tptq =
tp = tpsq and the “interchange law” (f ∗q g) ∗r (h ∗q k) = (f ∗r h) ∗q (g ∗r k) for f, g, h, k ∈ Cp.
The data (1) and (2)(i)(ii) with the globularity condition are precisely the data of reflexive
globular sets (i.e., set-valued presheaves on G) and (iii) is the structure required to extend it to
presheaves on Θ satisfying the Segal conditions.

Remark A.0.2. For any category C with finite limits, the obvious modification of the above
defines the notion of strict ∞-category objects in C, which describes C-valued presheaves on Θ
satisfying the Segal conditions.

A.1 Steiner’s adjunction

Steiner’s adjunction is between the category of augmented directed complexes and the category
of strict ω-categories. The main theorem of Steiner’s theory states that it restricts to an ad-
joint equivalence on the full subcategory of Strong Steiner objects. First, we compile relevant
definitions on the chain complex side:

93
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Definition A.1.1. (1) An augmented directed chain complex (ADC for short) is a triple
(A,A+, ϵ) = ((A•, ∂•), A

+
• , ϵ), where A ∈ Ch≥0(Z) is a nonnegatively (homologically)

graded chain complex, ϵ : A0 → Z is an augmentation and A+
n ⊂ An is a sub-N-

module (a.k.a. submonoid) for each n (called the positivity submonoid ; we do not ask
∂n(A

+
n ) ⊂ A+

n−1). We often omit ∂•, A
+, and ϵ when it is not confusing or clear from the

context.

(2) A map A → B of ADCs is a chain map f : A → B that commutes with augmentations
and satisfies f(A+) ⊂ B+. Let adCh denote the category of ADCs.

(3) A basis of an ADC (A•, A
+
• ) is a graded subset {Bq ⊂ A+

q }q≥0 which is both a Z-basis of
A and a N-basis of A+. This is unique if it exists1, in which case we call it the basis of A
and moreover make the following definitions:

(i) Any element a =
∑
b∈Bq

λbb ∈ Aq is uniquely a difference a = a+−a− with a+, a− ∈
A+. We write ∂±q (a) := (∂q(a))

±. Also, define supp(a) ⊂ Bq as the set of b ∈ Bq
with λb ̸= 0.

(ii) The basis {Bq} is unital if for every q ≥ 0 and b ∈ Bq we have ϵ ◦ ∂+0 ◦ · · · ◦ ∂
+
q−1(b) =

1 = ϵ ◦ ∂−0 ◦ · · · ◦ ∂
−
q−1(b).

(iii) Consider the preorder on
⊔
q≥0Bq generated by the relation

{(a, b) | b ∈ Bq, a ∈ supp(∂−q−1b)} ∪ {(a, b) | a ∈ Bq, b ∈ supp(∂+q−1a)}.

The basis is strongly loop-free if this preorder is a partial order.

(4) A strong Steiner complex is an ADC with a strongly loop-free unital basis.

Remark A.1.2. The category adCh is cocomplete and colimits can be computed degreewise.
More precisely, the forgetful functor adCh→ grModZ × grModN creates colimits.

Example A.1.3. For any CW complex X with chosen orientations of cells, we regard the
augmented cellular chain complex C•(X)→ Z as an ADC with the basis consisting of the cells.

In particular, let Dp ⊂ Rp ⊂ R∞ be the unit n-disk with the CW structure Dp =
(⊔

q≤p−1(e
q
+⊔

eq−)
)
⊔ ep, where eq± = {(x0, . . . , xq−1, xq, 0, . . . , 0) | x20 + · · · + x2q = 1,±xq > 0} ⊂ Rp. The

cellular chain {C•(Dq)}q≥0 extends to an ω-category object in adChop; for p > q ≥ 0,

• the co-source and the co-target map sq, tq : C•(D
q) → C•(D

p) are induced by the inclu-
sions Dq ↪→ Dp with the image eq− and eq+,

• the co-identity map iq : C•(D
p)→ C•(D

q) is induced by the projection Dp → Dq,

• the co-composition map ∗p : C•(Dp)→ colim(C•(D
p)← C•(D

q)→ C•(D
p)) ∼= C•(D

p⊔Dq

Dp) is induced by the q-fold unreduced suspension of the pinch map Dp−q → Dp−q∨Dp−q.
These moreover satisfy the interchange law.

In other words, {C•(Dq)} : G → adCh extends to a functor Θ → adCh satisfying the Segal
conditions, so the restricted Yoneda embedding adCh→ PShSet(Θ), which is right adjoint to the
Yoneda extension PShSet(Θ)→ adCh, factors through the subcategory ∞Catstr.

1This is true in general for a N-module. In fact, any isomorphism f : N⊕I → N⊕J is induced by a bijection
I → J . To show this, note that both f and f−1 are injective, so they do not decrease the sum of the coefficients
in the standard basis presentation.
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Definition A.1.4. Steiner’s adjunction

∞Catstr adCh
λ

ν
⊥

is the restricted Yoneda extension adjunction of {C•(Dq)}.

Remark A.1.5. One should think of λ as the linearization functor; q-cells of a strict ∞-category
X generates (λX)q and the relations are given by splitting a composition into a sum. The functor
ν is a sort of cellular nerve: for A ∈ adCh, a q-cell of νA corresponds to a map λXq → A. For
a detailed explicit description of these functors, see e.g. [OR23, §2.3].

We now explain the notion corresponding to strong Steiner complexes on the category side
following [Ara+23]:

Definition A.1.6. Let X be a strict ω-category.

(1) A set of cells E =
⊔
n≥0En of X, where En ⊂ Xn, is a polygraphic basis if the following

diagram is a pushout for any n:

⊔
Eq
∂Cq X≤q−1

⊔
Eq
Cq X≤q

C is called a polygraph or a computad if it admits a polygraphic basis. [Mak05][Ara+23,
Proposition 2.4] shows that if a basis exists, it must be the set of nondegenerate indecom-
posables.

(2) Let E be a polygraphic basis. For c ∈ Xq, define supp(c) ⊂ Eq be the set of factors of c.

(3) Consider the preorder on E generated by the relation⋃
p<q

{(a, b) ∈ Ep × Eq | a ∈ supp(spb)} ∪
⋃
p>q

{(a, b) ∈ Ep × Eq | b ∈ supp(tqa)}.

A polygraphic basis E is strongly loop-free if the preorder is a partial order.

(4) A strict ω-category is strong Steiner if it admits a strongly loop-free polygraphic basis.

Remark A.1.7. Any polygraph is Gaunt.

Theorem A.1.8 ([Ste04], [Ara+23]). The adjunction λ ⊣ ν restricts to an equivalence between
the category of strong Steiner categories and the category of strong Steiner complexes. Moreover,
λX is strong Steiner if and only if X is, and similarly for ν.

A.2 Operations on augmented directed complexes

Corresponding to the operations on strict ∞-categories, the category adCh has suspension,
duality involutions, and the tensor product. A good reference is [OR23, §1, 2].
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Definition A.2.1. The suspension functor σ : adCh→ adCh sends an object

A : · · · → An
∂A
n−−→ An−1 → · · · → A0

εA−−→ Z

to

· · · (σA)n (σA)n−1 · · · (σA)1 (σA)0 Z

· · · An−1 An−2 · · · A0 ⊥Z⊕⊤Z Z

∂σA
n

∂σA
n−1 ∂σA

1 εσA

∂A
n−1 ∂A

n−2 (−εA

εA ) (1,1)

with the positivity submonoids (σA)+n = A+
n−1 for n ≥ 1 and (σA)+0 = ⊥N⊕⊤N. On morphsims,

σ assigns f : A→ B to its obvious degree shift σf : σA→ σB. The functor σ clearly lifts to a
colimit-preserving, fully faithful functor σ : adCh→ adChσ0/.

Definition A.2.2. For τ ∈ (Z/2)Z≥1 , define the τ -dual functor Dτ : adCh→ adCh

(An, ∂n : An → An−1, ε, A
+) 7→ (An, (−1)τ(n)∂n, ε, A+)

on objects and the identity on morphisms (seen as those of graded abelian groups). When τ is
constantly 1, we call the τ -dual the total dual and denote by (−)◦. Similarly, when τ(n) ≡ n
(mod 2) (resp. τ(n) ≡ n + 1 (mod 2)) then we call the τ -dual the odd dual (resp. even dual)
and denote by (−)op (resp. (−)co).

In the following, in order to match with the lax Gray tensor product of∞-categories, we use
the reverse of the monoidal structure on adCh that is standard in the references [Ste04][OR23].
One can think of the reversed Koszul sign rule as the rule for differential acting from the right.

Definition A.2.3. (1) The usual symmetric monoidal structure on Ch≥0(Z) with Koszul sign
rule is equivalent to its reverse, i.e., the differential on a tensor product may as well be
defined by ∂(x⊗ y) = (−1)deg y(∂x)⊗ y+(x⊗ ∂y). We pick this reversed Koszul sign rule
convention for the tensor product.

(2) We equip grModN with the Day convolution symmetric monoidal structure, i.e., (A+
• ⊗N

B+
• )n =

⊕
i+j=nA

+
i ⊗N B

+
j .

(3) The symmetric monoidal structure on Ch≥0(Z) induces a symmetric monoidal structure

on the category Ch≥0(Z)/Z of augmented complexes by ϵA⊗B : (A⊗B)0 ≃ A0⊗B0
ϵA⊗ϵB−−−−→

Z⊗ Z ≃ Z.

(4) Let A = (A,A+, ϵA) and B = (B,B+, ϵB) be ADCs. We define the tensor product A⊗B
as (A ⊗Z B,A

+ ⊗N B
+, ϵA⊗B). This tensor product canonically extends to a monoidal

structure.

Remark A.2.4. The positivity structure in adCh breaks the symmetry of the tensor product:
if A and B are both free ADCs on a single basis element in degree 1, say a and b, then the
symmetry morphism a⊗ b 7→ −b⊗ a does not preserve the positivity submonoid.

Compatibility with the operations on∞Catstr through the Steiner’s adjunction is summarized
as follows:

Remark A.2.5. (1) ([AM20, Proposition A.3]) The functors σ, Dτ , ⊗ preserves strong Steiner
complexes.
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(2) ([OR23, Proposition 2.12]) There is a natural isomorphism νσ ∼= σν : adCh→∞Catstr

(3) ([AM20, Proposition 2.19]) For any τ , the τ -dual functor naturally commutes with λ and
ν.

(4) ([AM20, Theorem A.15], [OR23, Proposition 2.14]) There exists a unique biclosed monoidal
structure on ∞Catstr satisfying one of the following two equivalent conditions:

• ν|adChSte : adChSte →∞Catstr promotes to a monoidal functor (so X⊗X ′ := ν((λX)⊗
(λX ′)) for strong Steiner categories X,X ′), or

• λ :∞Cat→ adCh promotes to a monoidal functor, so (λX)⊗ (λX ′) ≃ λ(X ⊗X ′) for
strict ∞-categories X,X ′.

The monoidal structure is called the lax Gray tensor product of strict ∞-categories and
denoted by ⊗ or ⊗lax.

A.3 The cubes and The orientals

In this section, we define important families of strong Steiner categories and investigate their
basic combinatorics. Let C•(∆

n
comb) be the cellular chain complex of the combinatorial n-

simplex, i.e., Ck(∆
n
comb) =

⊕
α:[k]↣[n] Zα with the differential ∂α =

∑k
i=0(−1)iα ◦ δi (where

δi : [k−1]→ [k] skips the value i). We give it the structure of an ADC so that {α : [k] ↣ [n]} is
a basis. In the following, we will notationally identify the nondegenerate simplex α : [k] ↣ [n]
with the subset Imα ⊂ [n] and the i-th vertex is denoted by i. We let □1 := C1 be the
interval category and denote the degree 1 positive generator of λ□1 by ?, so the complex is
Z? → Z0 ⊕ Z1 with ∂(?) = 1 − 0, ε(0) = ε(1) = 1. We also denote the basis elements of
λ□n = (λ□1)⊗n by “(partially undetermined) binary strings” anan−1 · · · a1 := an⊗an−1⊗· · ·⊗a1
where ai ∈ {?, 0, 1}.

Definition A.3.1. The n-oriental is the strict n-category ∆n := νC•(∆
n
comb). The n-cube is

the strict n-category □n := (□1)⊗n = ν(C•(∆
1
comb)

⊗n). These are strong Steiner (see below).

The nontrivial part of checking the Strong Steinerness of the ADCs above is to show that
the basis is loop-free. It turns out that the preorder on the basis is not only a partial order but
in fact a total order in these cases:

Proposition A.3.2. Let n1, . . . , nk ≥ 0 be integers. The augmented directed chain complex
C•(∆

n1

comb)⊗ · · · ⊗ C•(∆
nk

comb) has a basis and the preorder of Definition A.1.1 is a total order.

Proof. [Ste04, example 3.8, 3.10] explicates the preorder on the lax cone construction and the
tensor product. The preorder on the tensor product is essentially the lexicographic order, twisted
by the degree according to the Koszul sign rule. The preorder on the lax (left) cone construction
is similar and for a subset of [n], it is a twisted lexicographic order on the indicator function,
read as a binary string. So both are total orders.

To give an idea of “the lexicographic order twisted by the degree” in the proof, let us work
out the case that we will use in Lemma 4.1.13.

Lemma A.3.3. □n is a strong Steiner category and the preorder of Definition A.1.1 on its
polygraphic basis is a linear order. In particular, Aut(□n) is trivial.
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Proof. The second part follows from the first because any automorphism must preserve the
order of the basis. When n = 1, the order on the basis is the total order 0 < ? < 1. In
general, Let an · · · a1, bn · · · b1 be two basis elements such that ai = bi for i < k and ak ̸= bk.
Unwinding the definition, we see that the order on the basis is the “signed lexicographic order,”
i.e., an · · · a1 < bn · · · b1 if and only if either

• a1, . . . , ak−1 contains even number of ? and ak < bk (in the totally ordered set {0 <? < 1}),
or

• a1, . . . , ak−1 contains odd number of ? and ak > bk.

For example, if a1, . . . , ak−1 contains even number of ? and ak = 0, bk =?, then

an · · · ak+10ak−1 · · · a1 ≤ 1 · · · 10ak−1 · · · a1 < 1 · · · 1?ak−1 · · · a1 ≤ bn · · · bk+1?ak−1 · · · a1

by the Koszul sign rule (observe that without the sign 1 · · · 1 is maximal and 0 · · · 0 is minimal)
and 1 · · · 10ak−1 · · · a1 ∈ supp(∂−(1 · · · 1?ak−1 · · · a1)). In particular, two basis elements are
always comparable by checking the rightmost different entries, so the preorder is linear.

Remark A.3.4. The subcategory Gaunt ⊂ ∞Cat is an exponential ideal for the cartesian product,
so in particular it is self-enriched by the functor category. Using the suspension-hom adjunction,
one sees that positive dimensional cells of a Gaunt-enriched (∞,∞)-category have a trivial ∞-
groupoid of automorphisms. Therefore, a skeletal subcategory of the category Gaunttriv−aut ⊂
Gaunt of gaunt∞-categories with trivial automorphisms is gaunt. It follows that □□ ,∆,Θ (both
as underlying 1-categories or as (∞,∞)-categories) are gaunt.

We end this section by proving some retract relations of these fundamental gaunt ∞-
categories.

Proposition A.3.5. (1) The quotient by the full subcategory {1}⊗∆n ⊂ □1⊗∆n is isomor-
phic to ∆n+1 and the quotient map admits a section sending the vertex n+ 1 to the vertex
1⊗ n.

(2) Further quotient by ∆{0,...n} ⊂ ∆n+1 is isomorphic to the (unreduced) suspension σ∆n

and the quotient map admits a retraction.

(3) The sink-source wedge sum ∆n ∨∆m is a retract of ∆n+m.

Proof. (1) We define the map Steiner complexes corresponding to q : □1⊗∆n → ∆n+1. As a
map of graded abelian groups, let

1⊗ α 7→

{
n+ 1 if deg(α) = 0

0 if deg(α) > 0
, 0⊗ α 7→ α, ?⊗ α 7→ α ⊔ {n+ 1}.

It is straightforward to check that the map defined is indeed a map of augmented directed
chain complexes. Note that the following square commutes and is bicartesian in Ch(Z)
(i.e., it is a short exact sequence in Ch(Z)Z//Z with the basepoint given by the sink vertex):

λ({1} ⊗∆n) λ(□1 ⊗∆n)

Z λ(∆n+1)
n+1
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So we have a short exact sequence of the reduced complexes

λ̃({1} ⊗∆n)→ λ̃(□1 ⊗∆n)→ λ̃(∆n+1).

Now the first map admits an obvious retraction, so the second map admits a section; this
splitting is given by the disjoint union decomposition of the standard basis, so the section
is again a map of (reduced) ADCs. Adding back the basepoint factor we obtain the section
λ(∆n+1)→ λ(□1 ⊗∆n).

(2) The argument is similar to the first part; define the map λ(∆n+1) ↠ λ(σ∆n) of ADCs by

α 7→

{
σ(α \ {n+ 1}) if deg(α) > 0, n+ 1 ∈ α
0 if deg(α) > 0, n+ 1 ̸∈ α

, 0, . . . , n 7→ ⊥, n+ 1 7→ ⊤.

Then the following is a short exact sequence in Ch(Z)Z//Z with the basepoint given by the
source vertex:

λ(∆{0,...,n}) λ(∆n+1)

Z λ(σ∆n)⊥

The rest goes the same as (1).

(3) The degree-k part of the ADC λ(∆n ∨∆m) is generated by injections [k]→ [n+m] with
the image contained either in {0, . . . , n} or {n, . . . , n+m}, so there is an obvious inclusion
s : λ(∆n ∨∆m) ↪→ λ(∆n+m). The retract r is the one which exhibits ∆n

comb ∨∆m
comb as a

simple deformation retract of ∆n+m
comb; explicitly, r(α) for α : [k] ↣ [n] is defined as follows:

• If α ⊂ {0, . . . , n} or α ⊂ {n, . . . , n+m}, then r(α) = α. Otherwise,

• If k = 1 so α(0) < n < α(1), then r(α) = {α(0), n}+ {n, α(1)}.
• If k ≥ 2 and α(0) < n < α(1), then r(α) = {n, α(1), . . . , α(k)}.
• If k ≥ 2 and α(k − 1) < n < α(k), then r(α) = {α(0), . . . , α(k − 1), n}
• If k ≥ 2 and α(0) < α(1) ≤ n ≤ α(k − 1) < α(k), then r(α) = 0.

Checking the equation r(∂α) = ∂(rα) is tedious but a straightforward casework:

• It is clear if α ⊂ {0, . . . , n} or {n, . . . , n+m}.
• If α(2) ≤ n ≤ α(k − 2), one has r(α ◦ δi) = 0 for all i.

• If k ≥ 4 and α(0) < α(1) ≤ n < α(2), we have r(α◦δ0) = r(α◦δ1) and r(α◦δ≥2) = 0,
s, r(∂α) = 0 = ∂(rα).

• If k ≥ 3 and α(0) < n < α(1), we have r(α ◦ δi) = r(α) ◦ δi.
• These and the symmetric cases cover except when k = 1, 2 and k = 3, α(1) ≤ n ≤
α(2), which can be checked one by one.

It is clear that r is a map of ADCs and that it is a retract.

The following density results are proven by [Cam22] (for the cubes) and [GHon] (for the
orientals).



100 APPENDIX A. STEINER’S THEORY FOR STRICT ∞-CATEGORIES

Corollary A.3.6. (1) The n-oriental ∆n is a retract of the n-cube □n.

(2) We have the inclusion of the idempotent completions Θ ⊂ ∆̃ ⊂ □̃□ . In particular, the
orientals and the cubes are dense in ∞Algbrd.

Proof. (1) This follows by inductively applying (1) of the proposition. Although it is nota-
tionally heavier, it is also not too hard to directly provide the section and retraction: the
retraction collapses each face of the form 0 · · · 01? · · ·? (possibly with no 0). The section
∆n ↪→ □n sends the simplex {i0 < · · · < ik} : [k] ↣ [n] to the composition of the faces of
□n of the form an . . . a1 where:

• ai = 0 if i > ik and ai = 1 if i ≤ i0.
• For each 0 ≤ j < k, exactly one among aij+1

· · · aij+1 is ? and on the left (resp. right)

of ? is all 1 (resp. 0).

When n = 3, the picture of “coarsening” the cube to the oriental is the following (observe
that the directions of 2- and 3-cells also align):

000 001

010 011

100 101

110 111

(2) The second inclusion follows from (1). The first inclusion uses the strategy of [Cam22]; by
our definition of Θ (Definition 2.1.4), it reduces to (2)(3) of the proposition.
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géométrie différentielle 24.4 (1983), pp. 377–379. url: http://www.numdam.org/
item/CTGDC_1983__24_4_377_0/.

[SS86] Stephen Schanuel and Ross Street. “The Free Adjunction”. In: Cahiers de Topologie
et Géométrie Différentielle Catégoriques 27.1 (1986), pp. 81–83. issn: 2681-2363.
url: http://archive.numdam.org/item/CTGDC_1986__27_1_81_0/.

[Bou89] A. K. Bousfield. “Homotopy Spectral Sequences and Obstructions”. In: Israel Jour-
nal of Mathematics 66.1 (1 Dec. 1, 1989), pp. 54–104. issn: 1565-8511. doi: 10.
1007/BF02765886.

[Ada95] J. F. Adams. Stable Homotopy and Generalised Homology. Chicago Lectures in
Mathematics. Chicago, IL: University of Chicago Press, Feb. 1995. 384 pp. isbn: 978-
0-226-00524-9. url: https://press.uchicago.edu/ucp/books/book/chicago/S/
bo21302708.html.

[Bae96] John C. Baez. Higher-Dimensional Algebra II: 2-Hilbert Spaces. Oct. 22, 1996. arXiv:
q-alg/9609018. url: http://arxiv.org/abs/q-alg/9609018. Pre-published.

[Voe98] Vladimir Voevodsky. “A1-Homotopy Theory”. In: Proceedings of the International
Congress of Mathematicians 1998. Vol. I. Jan. 1, 1998, pp. 579–604. isbn: 978-3-
9854704-4-0. doi: 10.4171/dms/1-1/21.

[Man+01] M. A. Mandell et al. “Model Categories of Diagram Spectra”. In: Proceedings of the
London Mathematical Society 82.2 (Mar. 2001), pp. 441–512. issn: 00246115. doi:
10.1112/S0024611501012692.

[Ste04] Richard Steiner. “Omega-Categories and Chain Complexes”. In: Homology, Ho-
motopy and Applications 6.1 (2004), pp. 175–200. issn: 15320073, 15320081. doi:
10.4310/HHA.2004.v6.n1.a12.

[Mak05] Michael Makkai. The Word Problem for Computads. 2005. url: https://www.
math.mcgill.ca/makkai/WordProblem/WordProblemCombined.pdf. Pre-published.

[Elm+07] A. Elmendorf et al. Rings, Modules, and Algebras in Stable Homotopy Theory.
Vol. 47. Mathematical Surveys and Monographs. American Mathematical Society,
Apr. 10, 2007. isbn: 978-0-8218-4303-1 978-1-4704-1278-4. doi: 10.1090/surv/047.

[Ver08] D. R. B. Verity. “Weak Complicial Sets I. Basic Homotopy Theory”. In: Advances
in Mathematics 219.4 (Nov. 10, 2008), pp. 1081–1149. issn: 0001-8708. doi: 10.
1016/j.aim.2008.06.003.

101

https://dmitripavlov.org/scans/boardman.pdf
http://www.numdam.org/item/CTGDC_1983__24_4_377_0/
http://www.numdam.org/item/CTGDC_1983__24_4_377_0/
http://archive.numdam.org/item/CTGDC_1986__27_1_81_0/
https://doi.org/10.1007/BF02765886
https://doi.org/10.1007/BF02765886
https://press.uchicago.edu/ucp/books/book/chicago/S/bo21302708.html
https://press.uchicago.edu/ucp/books/book/chicago/S/bo21302708.html
https://arxiv.org/abs/q-alg/9609018
http://arxiv.org/abs/q-alg/9609018
https://doi.org/10.4171/dms/1-1/21
https://doi.org/10.1112/S0024611501012692
https://doi.org/10.4310/HHA.2004.v6.n1.a12
https://www.math.mcgill.ca/makkai/WordProblem/WordProblemCombined.pdf
https://www.math.mcgill.ca/makkai/WordProblem/WordProblemCombined.pdf
https://doi.org/10.1090/surv/047
https://doi.org/10.1016/j.aim.2008.06.003
https://doi.org/10.1016/j.aim.2008.06.003


102 BIBLIOGRAPHY

[Fre+09] Daniel S. Freed et al. “Topological Quantum Field Theories from Compact Lie
Groups”. In: A Celebration of the Mathematical Legacy of Raoul Bott. AMS, June 19,
2009. isbn: 978-0-8218-4777-0. arXiv: 0905.0731 [hep-th]. url: http://arxiv.
org/abs/0905.0731.

[Lur09a] Jacob Lurie. (∞, 2)-Categories and the Goodwillie Calculus I. May 8, 2009. doi:
10.48550/arXiv.0905.0462. arXiv: 0905.0462 [math]. Pre-published.

[Lur09b] Jacob Lurie. Higher Topos Theory (AM-170): Princeton University Press, Dec. 31,
2009. isbn: 978-1-4008-3055-8. doi: 10.1515/9781400830558.

[Lur09c] Jacob Lurie. “On the Classification of Topological Field Theories”. In: Current De-
velopments in Mathematics, 2008. Vol. 2008. International Press of Boston, Oct. 1,
2009, pp. 129–281. url: https://projecteuclid.org/ebooks/current-developments-
in-mathematics/Current-Developments-in-Mathematics-2008/chapter/On-

the-classification-of-topological-field-theories/cdm/1254748657.

[BS10] John C. Baez and Michael Shulman. “Lectures on N-Categories and Cohomology”.
In: Towards Higher Categories. Ed. by John C. Baez and J. Peter May. Vol. 152.
New York, NY: Springer New York, 2010, pp. 1–68. isbn: 978-1-4419-1523-8 978-1-
4419-1524-5. doi: 10.1007/978-1-4419-1524-5_1.

[BFN10] David Ben-Zvi, John Francis, and David Nadler. “Integral Transforms and Drinfeld
Centers in Derived Algebraic Geometry”. In: Journal of the American Mathematical
Society 23.4 (Apr. 1, 2010), pp. 909–966. issn: 0894-0347, 1088-6834. doi: 10.1090/
S0894-0347-10-00669-7.

[Rez10] Charles Rezk. “A Cartesian Presentation of Weak n-Categories”. In: Geometry &
Topology 14.1 (Jan. 2, 2010), pp. 521–571. issn: 1364-0380, 1465-3060. doi: 10.
2140/gt.2010.14.521.

[GH15] David Gepner and Rune Haugseng. “Enriched ∞-Categories via Non-Symmetric
∞-Operads”. In: Advances in Mathematics 279 (July 2015), pp. 575–716. issn:
00018708. doi: 10.1016/j.aim.2015.02.007.

[MS15] Akhil Mathew and Vesna Stojanoska. “Fibers of Partial Totalizations of a Pointed
Cosimplicial Space”. In: Proceedings of the American Mathematical Society 144.1
(June 5, 2015), pp. 445–458. issn: 0002-9939, 1088-6826. doi: 10.1090/proc/12699.

[Rob15] Marco Robalo. “K-Theory and the Bridge from Motives to Noncommutative Mo-
tives”. In: Advances in Mathematics 269 (Jan. 10, 2015), pp. 399–550. issn: 0001-
8708. doi: 10.1016/j.aim.2014.10.011.

[GGN16] David Gepner, Moritz Groth, and Thomas Nikolaus. “Universality of Multiplicative
Infinite Loop Space Machines”. In: Algebraic & Geometric Topology 15.6 (Jan. 12,
2016), pp. 3107–3153. issn: 1472-2739, 1472-2747. doi: 10.2140/agt.2015.15.
3107.

[RV16] Emily Riehl and Dominic Verity. “Homotopy Coherent Adjunctions and the Formal
Theory of Monads”. In: Advances in Mathematics 286 (Jan. 2016), pp. 802–888.
issn: 00018708. doi: 10.1016/j.aim.2015.09.011.

[AF17] David Ayala and John Francis. The Cobordism Hypothesis. Aug. 18, 2017. doi:
10.48550/arXiv.1705.02240. arXiv: 1705.02240 [math]. Pre-published.

[JS17] Theo Johnson-Freyd and Claudia Scheimbauer. “(Op)Lax Natural Transformations,
Twisted Quantum Field Theories, and “Even Higher” Morita Categories”. In: Ad-
vances in Mathematics 307 (Feb. 5, 2017), pp. 147–223. issn: 0001-8708. doi: 10.
1016/j.aim.2016.11.014.

https://arxiv.org/abs/0905.0731
http://arxiv.org/abs/0905.0731
http://arxiv.org/abs/0905.0731
https://doi.org/10.48550/arXiv.0905.0462
https://arxiv.org/abs/0905.0462
https://doi.org/10.1515/9781400830558
https://projecteuclid.org/ebooks/current-developments-in-mathematics/Current-Developments-in-Mathematics-2008/chapter/On-the-classification-of-topological-field-theories/cdm/1254748657
https://projecteuclid.org/ebooks/current-developments-in-mathematics/Current-Developments-in-Mathematics-2008/chapter/On-the-classification-of-topological-field-theories/cdm/1254748657
https://projecteuclid.org/ebooks/current-developments-in-mathematics/Current-Developments-in-Mathematics-2008/chapter/On-the-classification-of-topological-field-theories/cdm/1254748657
https://doi.org/10.1007/978-1-4419-1524-5_1
https://doi.org/10.1090/S0894-0347-10-00669-7
https://doi.org/10.1090/S0894-0347-10-00669-7
https://doi.org/10.2140/gt.2010.14.521
https://doi.org/10.2140/gt.2010.14.521
https://doi.org/10.1016/j.aim.2015.02.007
https://doi.org/10.1090/proc/12699
https://doi.org/10.1016/j.aim.2014.10.011
https://doi.org/10.2140/agt.2015.15.3107
https://doi.org/10.2140/agt.2015.15.3107
https://doi.org/10.1016/j.aim.2015.09.011
https://doi.org/10.48550/arXiv.1705.02240
https://arxiv.org/abs/1705.02240
https://doi.org/10.1016/j.aim.2016.11.014
https://doi.org/10.1016/j.aim.2016.11.014


BIBLIOGRAPHY 103

[LZ17] Yifeng Liu and Weizhe Zheng. Enhanced Six Operations and Base Change Theorem
for Higher Artin Stacks. Sept. 26, 2017. doi: 10.48550/arXiv.1211.5948. arXiv:
1211.5948 [math]. Pre-published.

[Lur17] Jacob Lurie. Higher Algebra. Sept. 2017. url: https://www.math.ias.edu/

~lurie/papers/HA.pdf.

[Nik17] Thomas Nikolaus. The Group Completion Theorem via Localizations of Ring Spec-
tra. July 25, 2017.

[AF18] David Ayala and John Francis. Flagged Higher Categories. Jan. 26, 2018. arXiv:
1801.08973 [math]. url: http://arxiv.org/abs/1801.08973. Pre-published.

[Hor18] Ryo Horiuchi. “Observations on the Sphere Spectrum”. Department of Mathemat-
ical Sciences, Faculty of Science, University of Copenhagen, 2018. url: https:
//soeg.kb.dk/permalink/45KBDK_KGL/fbp0ps/alma99122355005405763.

[Lur18] Jacob Lurie. Spectral Algebraic Geometry. 2018. url: https://www.math.ias.
edu/~lurie/papers/SAG-rootfile.pdf.

[CS19] Damien Calaque and Claudia Scheimbauer. “A Note on the (∞, n)-Category of
Cobordisms”. In: Algebraic & Geometric Topology 19.2 (Mar. 12, 2019), pp. 533–655.
issn: 1472-2739, 1472-2747. doi: 10.2140/agt.2019.19.533. arXiv: 1509.08906
[math].

[AM20] Dimitri Ara and Georges Maltsiniotis. “Joint et Tranches Pour Les ∞-Catégories
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