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In this note, I will describe how to relax algebraic structures into homotopical ones, using homological algebra
of operads. The main reference is [1].

1 Three definitions of operads

In this section (M,⊗, I) is a cocomplete symmetric closed monoidal category. Examples include (Set,×, ∗),
(Top,×, ∗), (ModK,⊗,K) for a commutative ring K, (grModK,⊗,K), (dgModK,⊗,K), (Top∗,∧, S0), (Spec,∧,S).
The base ring K is usually fixed and omitted from the notation. See Remark 3.1.1 for more on these closed monoidal
structures.

1.1 The first definition

Let Σ be a category whose objects are finite sets {1, 2, . . . , n} for each n ≥ 1 and morphisms are bijections between
them. Therefore the automorphism group AutΣ(n) = Σn is a symmetric group and Σ is, as a groupoid, the direct
sum of all of these. Σ is sometimes called the symmetric groupoid.

Definition 1.1.1. A (reduced right) Σ-module 1 is a functor M : Σop →M i.e., a sequence of objects M(n) ∈M,
n ≥ 1, together with a right action of Σn on each M(n). For an element µ ∈ M(n), n is called an arity of µ. A
morphism of Σ-module is a natural transformation. We denote the category of Σ-module in M by MΣop

.

Each term M(n) of Σ-module should be considered as a space of n-ary operations, where the right Σn-action
encodes permutation of inputs. Usually, objects in M are identified with Σ-modules concentrated in arity 1. The
adjective “reduced” means that we do not consider 0-ary operations, i.e. constants such as units, and will be
omitted in the rest of this note. We need to refine the theory to treat the bar-cobar duality for operads which
governs algebraic structure with constants, see Theorem 6.3.4 for instance.

Definition 1.1.2. An operad in M is a triple (P, γ, η) such that

• P ∈ MΣop

,

• γ(n; k1, . . . , kn) : P(n)⊗Σn
(P(k1)⊗· · ·⊗P(kn))→ P(k1 + · · · kn) for n, k1, . . . , kn ≥ 1, called the composition

maps which are Σk1
× · · · × Σkn(⊂ Σk1+···+kn)-equivariant,

• η : I → P(1) (or in concrete categories id ∈ P(1)), called the identity operation.

• γ and η are suitably associative and unital.

A morphism of operads is a morphism of Σ-modules which commutes with η and γ. We denote the category of
operads in M by Op(M).

This is a generalization of the notion of associative algebra in the following sense: when P(n) = 0 (the initial
object) for n 6= 1, we can identify P with an unital associative algebra (or monoid) P(1) ∈ M. In particular, the
monoidal unit I admits a canonical operad structure. The above definition has a slightly different formulation:

Proposition 1.1.3. Let (P, γ, η) be an operad. It is characterized by the identity and the collection of partial
composition maps −◦i− : P(m)⊗P(n)→ P(m+n−1) for m,n ≥ 1, 1 ≤ i ≤ m given by γ(m; 1, . . . , 1, n, 1, . . . , 1)◦
(id⊗ η ⊗ · · · ⊗ η ⊗ id⊗ η ⊗ · · · ⊗ η) satisfying suitable unitality and associativity.

1This terminology (S-module in [1]) is popular in the algebraic context. In the topological context, it is often called symmetric
sequence, since “S-module” usually means the EKMM model of spectra.
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Definition 1.1.4. In algebraic contexts such as M = Mod,grMod,dgMod, an operad P is augmented when it
is equipped with a map of operads ε : P → I called an augmentation. In this case, P = P̄ ⊕ I as Σ-modules for
P̄ := ker ε. Morphisms of augmented operads are morphisms of operads which respects the augmentations. We
denote the category of augmented operads by aug-Op(M).

1.2 First examples and algebras over operads

Here I give some of the examples. The prototypical example is the endomorphism operad:

Example. For any object X ∈M, we define the endomorphism operad EndX by

EndX(n) :=M(X⊗n, X).

The composition maps and identity are given by the actual composition and the identity. Dually the co-endomorphism
operad coEndX is given by

coEndX(n) :=M(X,X⊗n).

Using this (co-)endomorphism operad, we can define the notion of (co)algebras over an operad:

Definition 1.2.1. P-algebra (resp. coalgebra) is an object X ∈ M together with a map of operads P → EndX
(resp. P → coEndX). Morphisms are those in M which commute with structure morphisms. We denote the
category of P-algebra by P-Alg.

A morphism of operads f : P → Q induces a functor f∗ : Q-Alg → P-Alg. The structure morphism f : P →
EndX can be considered as a “multilinear representation” and allows µ ∈ P(n) to act on X as an actual n-ary
operation. We denote f(µ)(x1, . . . , xn) simply by µ(x1, . . . , xn). When P is identified with an associative algebra,
the notion of P-algebra reduces to the usual representation.

The following Ass and Com are also fundamental:

Example. The associative operad Ass is given by Ass(n) := I ·Σn. Here the dot means the copower over Set. The
category Ass-Alg is the category of associative algebras without units.

Example. The commutative operad Com is given by Com(n) := I. The category Com-Alg is the category of
commutative algebra without units.

1.3 The second definition: operad as a monoid

“Operad” is a portmanteau word made by combining “operation” and “monad.” The following definitions give rise
to the monadic viewpoint:

Definition 1.3.1. The Schur functor associated to a Σ-module M = {M(n)} in M is the endofunctor M̃ of M
given by

M̃(X) :=

∫ n∈Σ

M(n)⊗X⊗n :=
∐
n≥0

(M(n)⊗X⊗n)Σn

for each X ∈M. This gives a functor ˜(−) :MΣop → End(M), which is faithful in Set and algebraic examples.

M̃(X) should be interpreted as a space of tuples (f ;x1, . . . , xn), where f is an n-ary operation and x1, . . . , xn
are inputs, identified up to equivariance. The Σ-module I is defined by I(1) = I and I(n) = 0 otherwise. The
associated Schur functor Ĩ is the identity functor.

Definition 1.3.2. For two Σ-modules M,N we define

1. the sum (M qN)(n) := M(n)qN(n),

2. the tensor product (M ⊗N)(n) :=
∫ i,j∈Σ

Σ(i+ j, n)⊗M(i)⊗N(j) =
∐
i+j=n(M(i)⊗N(j))⊗Σi×Σj

Σn, aka
the Day convolution,

3. the composition product M ◦N :=
∫ k∈Σ

M(k)⊗N⊗k =
∐
k≥0(M(k)⊗N⊗k)Σk

. This can also be written as

M ◦N(n) :=

∫ k∈Σ ∫ i1,...,ik∈Σ

Σ(i1 + · · ·+ ik, n)⊗M(k)⊗N(i1)⊗ · · · ⊗N(ik)

∼=
∐
k

∐
i1+···+ik

=n

M(k)⊗Σk
(N(i1)⊗ · · · ⊗N(ik))⊗Σi1

×···×Σik
Σn.
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These terminologies are justified by the following proposition.

Proposition 1.3.3. The Schur functor of the above constructions gives the counterparts in the category of endo-
functors, i.e.

1. M̃ qN ∼= M̃(-)q Ñ(-),

2. M̃ ⊗N ∼= M̃(-)⊗ Ñ(-),

3. M̃ ◦N ∼= M̃ ◦ Ñ ,

where q and ⊗ on the right-hand side are taken objectwise. It follows that (MΣop

, ◦, I) forms a monoidal category.

Proof. This is a standard coend calculus.

Proposition 1.3.4. Operad structures on a Σ-module P correspond to monoid structures on P in (MΣop

, ◦, I)
(i.e. the monad structure on P̃).

Proof. (µ; ν1, . . . , νk) ∈ (P(k) ⊗ P⊗k)Σk
can be considered as a “composable tuple of operations.” Therefore a

morphism P ◦ P → P of Σ-modules encodes appropriately equivariant composition maps. The unit map I → P
corresponds to the identity operation.

Proposition 1.3.5. Let P be an operad. P-algebra (resp. P-coalgebra) structures are equivalent to the algebra
(resp. coalgebra) structures over the monad P̃.

Proof. Under the adjunctionM(P̃(X), X) ∼=
∏
n≥1MΣn

(P(n),M(X⊗n, X)), two structures determines each other.

From now on we will omit the notation for the Schur functor.

1.4 The third definition: operad as an algebra over the tree monad

We introduce “dendroidal” approach and give the third definition of operads2. In this note, we assume that all the
trees are rooted, have no external vertices, and therefore every vertex has at least one input. For any nonempty
finite set X, Let T(X) be the set of trees with a bijection between its leaves and X. We also define T̃(X) by the
set of nontrivial (i.e. have at least one vertex) trees in T(X). The set of vertices of t ∈ T(X) is denoted by vert(t).
For a vertex v ∈ vert(t), let us denote the set of incoming edges (from leaves to the root) by in(v). The number
|in(v)| of incoming edges is called the arity of the vertex v.

Definition 1.4.1.

1. For M ∈MΣop

and t ∈ T(n), we define the treewise tensor product by M(t) =
⊗

v∈vert(t)M(|in(v)|).

2. The tree functor T :MΣop →MΣop

(resp. the reduced tree functor T̃) is defined by TM(n) =
∐
t∈T(n)M(t)

(resp. T̃M(n) =
∐
t∈T̃(n)M(t)).

3. The weight grading TM(n) =
∐
w≥0 T(w)M(n) is given by T(w)M(n) :=

∐
|vert(t)|=wM(t).

The object TM(X) can be thought of as a space of trees whose leaves are labeled by X and vertices with arity
n are labeled by n-ary operations of M .

Remark 1.4.2. For low-weight components, we have explicit descriptions as follows:

• The weight 0 component T(0)M(n) is I when n = 1 and 0 otherwise. Using this weight grading T̃M is precisely
the positive-weight part of TM .

• Since there is only one tree with a single vertex and n leaves (called corolla) for each n, the weight 1 component
T(1)M can be identified with M .

• The weight 2 component T(2)M can be considered as a special case M ◦(1) M of the following definition.

2If we go further in this direction, we can characterize (colored) operads among dendroidal sets in a similar way as we characterize
categories among simplicial sets, and also can give a definition of ∞-operads. See [4]

3



Definition 1.4.3. For M,N ∈ MΣop

, we define the infinitesimal (or linearized) composition product M ◦(1) N ⊂
M ◦ (I qN) =

∫ k∈Σ
M(k)⊗ (I qN)⊗k by the sum of components coming from I ⊗ · · · ⊗N ⊗ · · · ⊗ I ⊂ (I qN)⊗k

(contains exactly one N). This product is linear in the sense that ◦(1) is distributive with respect to q on both
sides.

Proposition 1.4.4. The functor T admits a monad structure (T, α, ι), where α : T◦T→ T is given by substitution
of trees into vertices, in other words, by considering “a tree of trees” as a single tree, and ι : id→ T is the inclusion
into the weight 1 part. We can put a monad structure on T̃ in a similar way.

Proposition 1.4.5. Let M be a Σ-module.

1. Operad structure on M bijectively corresponds to algebra structures on M over the monad T.

2. augmented operad structures on M q I bijectively corresponds to algebra structures on M over the monad T̃.

Proof. Unwinding the definition, the restriction T(2)M →M of the T-algebra structure map determines the partial
composition of operads and I → TM determines the identity operation. It is also straightforward to check the
other direction and the augmented case.

Using this characterization, we get the construction of free (augmented) operads for free:

Corollary 1.4.6. For a Σ-module M , the operad T(M) (resp. T̃(M) ⊕ I) is free in the category Op(M) (resp.
aug-Op(M)). We denote the free augmented operad T̃(M)⊕ I on M by TM .

1.5 non-symmetric operad

Once we forget about the symmetric group action and use N, the discrete category of positive integers, instead of
Σ, then we get a notion of non-symmetric (ns for short) operads. Equivalently, it is an algebra over the planar
tree monad. This notion is simpler3, but it can only encode algebras that do not need any permutation in their
definition4. The basic example is As, the associative (ns-)operad, which is defined by As(n) = I for all n ≥ 1. In
most cases, theorems about operads hold in a parallel manner for ns-operads, and As is the simplest non-trivial
example that we should keep in mind.

1.6 Algebras as operads

The monoid object (or unital associative algebra) inM can be identified with operads with only unary operations.
Equivalently, if we employ ladders instead of trees we recover the notion of monoids. This reduction is often
enlightening and should be always kept in mind since almost all constructions in this note for (co)operads recovers
the simpler construction for (co)algebras.

2 Cooperads

The notion of cooperads is the “dual” of that of operads, in the sense that cooperads are about decomposing
operations, while operads are about composing operations. Though the notion of cooperads can be defined on the
same line as operads, it involves some subtleties:

Warning. In each definition of operads, everything was colimit: even the monoidal product was the notion of this
side. Thus, the equivalence of the definitions are completely formal, basically relies on coend calculus. Here in the
definition of cooperads, we have some choices about to what extent we dualize these colimits to limits. For defining
exact dual we should dualize everything, but the monoidal product does not behave like limits in non-cartesian
examples.

Here, for the sake of simplicity, we compromise by restricting ourselves to examples M = (ModK,⊗,K),
(grModK,⊗,K), (dgModK,⊗,K) where K is a field of characteristic 0. These categories have very special prop-
erties that certain limits and colimits coincide: it has biproducts ⊕ and for any finite group G, the natural map
XG → XG between invariants and coinvariants is an isomorphism. Also note that, by Maschke’s theorem, K[G]
is semisimple and therefore all K[G]-module are automatically projective and injective, and in particular, we have
Künneth isomorphism. Most of the theory can be generalized to modules over arbitrary commutative rings, under
some assumptions such as projectivity of modules that appear (see [3] for details).

3And in the following characteristic zero assumption of the base field is unnecessary for nonsymmetric operads
4For example, to express the Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] we need cyclic permutation of variables.
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2.1 Definitions of cooperads and conilpotence

Definition 2.1.1.

1. A cooperad (C,∆, ε) inM is a comonoid in (MΣop

, ◦, I), whose structure maps are ∆ : C → C◦C and ε : C → I.

2. A cooperad C is coaugmented when it is equipped with a morphism of cooperads η : I → C and therefore a
splitting C ∼= C̄ ⊕ I. The image under η of the generator (in an appropriate sense) of I is often called identity
cooperation and denoted by id.

3. A coaugmented cooperad is conilpotent if any successive nontrivial (i.e. not of the form (id;µ) or (µ; id, . . . , id))
decomposition of any cooperation in C terminates; see section 5.8.5 of [1] for the precise definition.

For our purpose, conilpotence can be better described by the following characterization:

Proposition 2.1.2.

1. The reduced tree functor T̃ admits a comonad structure (T̃,∆, ε), where ∆ is given by sending a tree to the
sum of all possible decomposition as a “tree of nontrivial trees”, and ε is given by the projection onto the
weight 1 part.

2. For a Σ-module M , The conilpotent cooperad structure on M ⊕ I is equivalent to the coalgebra structure on
M over the comonad T̃.

Proof. This is the dual of the Proposition 1.4.5. Conilponence is encoded in the fact that any tree can be decomposed
as a tree of nontrivial trees only for finite times.

Corollary 2.1.3. For a Σ-Module M, the conilpotent cooperad T̃(M) ⊕ I is cofree in the category conil-coOp,
which we will denote by T cM .

3 dg-operads and twisting morphisms

dg-operads (resp. graded operads) are operads in the category (dgModk,⊗, k) (resp. (grModk,⊗, k)).

3.1 General remarks on signs and differentials

Remark 3.1.1. For dg-modules, we will use the homological degree which is indicated by subscripts. We assume
that dg-modules are nonnegatively graded (so that the spectral sequence in the black box works well). The degree
of a homogenous element x is denoted by |x|. For the symmetric monoidal structure, we apply the Koszul sign rule
as follows:

• The differential on the tensor product (A⊗B)n =
⊕

0≤k≤nAk ⊗Bn−k is given by dA⊗B(a⊗ b) = dAa⊗ b+

(−1)|a|a⊗ dBb.

• The symmetry isomorphism is given by a⊗ b 7→ (−1)|a||b|b⊗ a.

• The hom set HomdgModk
(A,B) is the set of (degree 0) chain maps. This is enriched to the internal hom

Hom(A,B) = (Hom(A,B)•, ∂) is given by Hom(A,B)n =
∏
k≥0 HomModk

(Ak, Bk+n) and ∂f := [d, f ] =

dB ◦ f − (−1)|f |f ◦ dA.

The generality from Section 1.3 applies and gives the symmetric monoidal categories of dg and graded Σ-
modules. By construction, the composition product of two dg Σ-modules agrees with the composition product of
the underlying graded Σ-modules as graded Σ-modules. For describing Leibniz rule in dg operads, it is convenient
to introduce the following notation:

Definition 3.1.2. For maps between Σ-modules f : M →M ′ and g : N → N , we define f ◦′ g : M ◦N →M ′ ◦N
by

∑
i+j=n−1 f ⊗Σn (id⊗i ⊗ g ⊗ id⊗j).
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The differential on the composite product of (M,dM ), (N, dN ) is given by the Leibniz rule dM◦N = dM ◦ idN +
idM ◦′ dN . Written plainly, it looks like the “usual” Leibniz rule with Koszul signs involved:

(µ; ν1, . . . , νk) 7→ (dMµ; ν1, . . . , νk) +

k∑
i=1

(−1)|µ|+|ν1|+···+|νi−1|(µ; ν1, . . . , dNνi, . . . , νk),

where (µ; ν1, . . . , νk) ∈M(k)⊗Σk
(N(i1)⊗ · · · ⊗N(ik))⊗Σi1

×···×Σik k[Σn]. The differential of a dg-(co)operad can
be considered as an additional structure on the underlying graded (co)operad.

Definition 3.1.3. Let (P, γ, η) (resp. (C,∆, ε)) be a graded operad (resp. cooperad). We say that a homogenous
map dP : P → P (resp. dC : C → C)is a derivation (resp. coderivation) if the following diagram commutes:

P ◦ P
γ //

dP◦P
��

P

dP
��

C ∆ //

dC
��

C ◦ C

dC◦C
��

P ◦ P
γ // P C ∆ // C ◦ C.

We denote the linear space of derivations on P (resp. coderivations on C) by Der(P) (resp. coDer(C)).
This condition again looks like a usual Leibniz rule if we see γ as a product.

Remark 3.1.4. dP defines a structure of a dg-operad on the graded operad (P, γ, η) if it is a square-zero coderivation.
A similar statement also holds for cooperads.

The following lemma is convenient when we define (co)derivations on (co)free (co)operads in terms of generators.

Lemma 3.1.5. For any graded Σ-module E, we have the following isomorphisms:

1. Der(T (E))
∼=−→ HomgrModΣop (E, T (E)) which is given by restriction to the generators.

2. coDer(T c(E))
∼=−→ HomgrModΣop (T c(E), E) which is given by composition with the projection T c(E)→ E.

3.2 Twisting morphisms

Let P be an augmented dg-operad, C be a coaugmented dg-cooperad. We define a space of Σ-equivariant maps by

HomΣ(C̄, P̄) :=
∏
n≥0

HomΣn(C̄(n), P̄(n)).

Then we define a “linearized convolution product” f ? g of f, g ∈ HomΣ(C̄, P̄) by

f ? g : C
∆(1)−−−→ C ◦(1) C

f◦(1)g−−−−→ P ◦(1) P
γ(1)−−→ P.

This is a pre-Lie product in the following sense:

Definition 3.2.1.

1. A dg-pre-Lie algebra (L, ∂, ?) is a dg-module (L, ∂) with a binary product ? : L⊗L→ L which commute with
the differentials and whose associator is right commutative i.e.,

(x ? y) ? z − x ? (y ? z) = (−1)|y||z|((x ? z) ? y − x ? (z ? y)).

2. A dg-Lie algebra (L, ∂, [-, -]) is a dg-module (L, ∂) with a binary product [-, -] : A⊗A→ A which commute with
the differentials and satisfies the anticommutativity [x, y] = −(−1)|x||y|[y, x] and adz := [z, -] is a derivation
for all z, i.e., [z, [x, y]] = [[z, x], y] + (−1)|x||z|[x, [z, y]].

The notion of pre-Lie algebras is a generalization of that of associative algebras. It is straightforward to check
that the antisymmetrization of a dg-pre-Lie algebra [f, g] = x ? y − (−1)|x||y|y ? x gives a dg-Lie algebra (L, [-, -]).
The following definition plays an important role in deformation theory:

Definition 3.2.2. A Maurer-Cartan element of a dg-Lie (resp. pre-Lie) algebra is an element α ∈ L−1 which
satisfies the Maurer-Cartan equation ∂α+ 1

2 [α, α] = 0 (resp. ∂α+ α ? α = 0).

A Maurer-Cartan element of the convolution dg-pre-Lie algebra (HomΣ(C,P), ∂, ?) whose compositions with
augmentation and coaugmentation are 0 is called a twisting morphism from C to P. The set of twisting morphism
is denoted by Tw(C,P) ⊂ HomΣ(C̄, P̄)−1. One can readily see that Tw(C,P) is functorial in C and P. It will be
proven in the next section that they are representable in both variables.
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4 Bar and cobar construction

In this section, we establish a pair of functors Ω : conil-dgcoOp � aug-dgOp : B with natural isomorphisms

Homaug-dgOp(ΩC,P) ∼= Tw(C,P) ∼= Homconil-dgcoOp(C,BP).

Define the suspension (resp. desuspension) of a dg Σ-module M by sM := sK ⊗M (resp. s−1M := s−1K ⊗M5),
where sK (resp. s−1K) is the Σ-module concentrated in arity 1 and degree |s| = 1. Observe that we have a sequence
of natural isomorphisms

Homaug-grOp(T (s−1C̄),P) ∼= HomΣ(s−1C̄, P̄)0

∼= HomΣ(C̄, P̄)−1

∼= HomΣ(C̄, sP̄)0
∼= Homconil-grcoOp(C, T c(sP̄)).

We will define a square-zero (co)derivation respectively on T (s−1C̄) and T c(sP̄) to define dg-(co)operads ΩC and
BP so that the above isomorphisms restricts to the desired adjunction.

4.1 Differential on bar construction

Let d1 be the differential on the cofree conilpotent dg-cooperad T cP̄. We define d2 to be a unique coderivation
which lifts the following map:

d2 : T c(sP̄) � T c(sP̄)(2) ∼= sP̄ ◦(1) sP̄ → sP̄,

where the last map is given by (sµ; id, . . . , sν, . . . , id) 7→ (−1)|µ|sµ ◦i ν.

Lemma 4.1.1. d2
1 = d2

2 = 0, d1d2 + d2d1 = 0, (d1 + d2)2 = 0.

Proof. The first two points are verified directly using the Koszul sign rule. The third point follows from the first
two.

As in the classical bar construction for dg-algebras, the differential d1 is the differential coming from the original
differential on each term, whereas d2 corresponds to “removing the bar | (this was the shorthand notation for ⊗ in
tensor coalgebra).”

Definition 4.1.2. We define the bar construction of an augmented operad P as the dg cooperad whose underlying
graded cooperad is T c(sP) and whose differential is d = d1 + d2 above. We denote this dg cooperad by BP.

Proposition 4.1.3. Under the isomorphism Homconil-grcoOp(C, T c(sP̄))→ HomΣ(C̄, P̄)−1; f 7→ pr ◦f |C̄, a graded
morphism f is sent to a twisting morphism if and only if it commutes with the differentials, i.e. it is a morphism
of conilpotent dg-cooperads C → BP.

4.2 Differential on cobar construction

Dually, we can define the cobar construction ΩC for a conilpotent cooperad C. It is an augmented dg-operad whose
underlying graded operad is T (s−1C̄) and the differential is d = d1 + d2 defined in the dual way.

Proposition 4.2.1. Under the isomorphism Homaug-grOp(T (s−1C̄),P)
∼=−→ HomΣ(C̄, P̄)−1; f → f |C̄, a graded

morphism g is sent to a twisting morphism if and only if it commutes with the differentials, i.e. it is a morphism
of augmented dg-operads ΩC → P.

5 Homotopy transfer: ΩC-algebra structure is homotopy invariant

The reason why we care about bar and cobar construction is that it gives a resolution of an operad in a suitable
sense and therefore any algebra structure on cobar construction is “homotopy invariant.”

5More precisely, we discard the degree 0 part of M when we desuspend.
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Definition 5.1.1. Let (V, dV ) and (W,dW ) be dg vector spaces. We say V is a homotopy retract of W when they
are given maps

(W,dW ) (V, dV )h

p

i

where i is a quasi-isomorphism and h satisfies idW − ip = dWh+ hdW .

Example. 1. If V and W are homotopy equivalent, then they are homotopy retracts of one another.

2. Since we are working with field coefficients, for any (V, dV ) ∈ dgModk, the homology (H•(V ), 0) is a homotopy
retract of V .

Theorem 5.1.2. Let C be a conilpotent cooperad and V be a homotopy retract of W . Any ΩC-algebra structure on
W can be transferred into a ΩC-algebra structure on V .

Proof. Using the bar-cobar adjunction Hom(ΩC,EndW ) ∼= Hom(C,BEndW ), it is enough to construct a morphism
of cooperads BEndW → BEndV using the data of homotopy retract as follows:

1. First, we define a map T c(sEndW )→ sEndV of Σ-modules. Elements in the domain are generated by elements
of treewise tensor product sµ1⊗· · ·⊗sµk ∈ (sEndW )(t) for some nontrivial tree t with k vertices and n leaves.
We may assume that µ1 labels the root vertex. We send such a tree to the suspension of the operation

V ⊗n
i⊗n

−−→W⊗n
γ(µ1⊗hµ2⊗···⊗hµk)−−−−−−−−−−−−−→W

p−→ V,

where γ : (sEndW )(t)→ sEndW (n) is the treewise composition map. Equivalently, we obtain such operation
on V by decorating all leaves by i, the root by p, and all internal edges by h.

2. We lift the map in (1) to a morphism of graded cooperads T c(sEndW )→ T c(sEndV ).

3. It can be directly proven that the map in (2) commutes with the differentials.

Therefore in order to find an appropriate “homotopy invariant version” of P-algebra, we want to find a quasi-

isomorphism ΩC '−→ P, which is called a resolution. This will be achieved in two ways in the following sections: the
bar-cobar resolution and the Koszul resolution.

6 Twisted composition product

6.1 Twisted composition product

Let C be a conilpotent cooperad and P be an augmented operad, α ∈ Tw(C,P) be a twisting morphism. We can
form a twisted composition products C ◦αP and P ◦α C, which is analogous to the geometric construction of twisted
products, i.e. bundles6. See [5] for the original geometric idea.

Let (P, γP , ηP) be a dg-operad. A left graded P-module is a module over the monoid P in grMod, i.e. graded
Σ-module M with module structure maps γM : P ◦M which satisfies obvious action properties. We say that a map
dM : M →M is a derivation if the following diagram commutes:

P ◦M
γM //

dP◦M=dP◦idM+idP◦′dM
��

M

dM
��

M
γM // M.

We define similarly right graded P-modules and its derivations. We denote both spaces of derivations by DerP(M).
The following is an analog of 3.1.5 for free modules:

6I guess there is an analogous way to construct a twisted bundle from a flat connection on a bundle, where the flatness corresponds
to the cocycle condition of pasting via parallel transport, but I’m not sure. cf. Grothendieck connection.

8



Lemma 6.1.1. For any graded Σ-module M , the derivation on the free graded P-modules P ◦M and M ◦ P are
characterized by the restriction on the generators, i.e. the following restrictions are isomorphisms:

DerP(P ◦M)
∼=−→ Hom(M,P ◦M), DerP(M ◦ P)

∼=−→ Hom(M,M ◦ P).

Let α ∈ HomΣ(C̄, P̄)−1 be any map of degree −1. First, we define dlα ∈ DerP(P ◦C) to be the unique derivation

on the free left module which extends C ∆−→ C ◦ C α◦idC−−−−→ P ◦ C. Similarly, we define drα ∈ DerP(C ◦ P) as a unique

derivation the free right module which extends C
∆(1)−−−→ C ◦(1) C

idC◦(1)α−−−−−→ C ◦(1) P → C ◦ P. We add this “twisting

terms” to the ordinary differentials on the composition products to get dα := dP◦C+dlα on P◦C and dα := dC◦P+drα
on C ◦ P.

Lemma 6.1.2. When α is a twisting morphism, dα is a differential (i.e. square-zero derivation of degree −1) on
composition products C ◦ P and P ◦ C. We denote this composition product with twisted differential by C ◦α P and
P ◦α C.

Proof. Since dα is a derivation of degree −1 by construction, it is enough to prove that it squares to zero. This
follows from the equations dα = dl∂(α)+α?α (resp. dr∂(α)+α?α) on P ◦ C (resp. C ◦ P). The proof of this equation is

based on the observation that [dlα, d
l
β ] = dl[α,β] and [drα, d

r
β ] = dr[α,β].

6.2 The black box(es) of the day

Here are two technically important lemmas that I will not even sketch the proof, which would involve some intricate
argument using spectral sequences.

6.2.1 The first black box

In the natural isomorphism Homaug-dgOp(ΩC,ΩC) ∼= Tw(C,ΩC), the twisting morphism corresponding to idΩC is
called the universal twisting morphism and is denoted by ι. Dually, in Tw(BP,P) ∼= Homconil-dgcoOp(BP,BP),
the corresponding universal twisting morphism to idBP is denoted by π.

Remark 6.2.1. 1. These are universal in the sense that any twisting morphism α : C → P factors uniquely through
ι and π, i.e. α = π ◦ fα = gα ◦ ι for a unique fα ∈ Homaug-dgOp(ΩC,P) and gα ∈ Homconil-dgcoOp(C,BP).

2. These have explicit descriptions: π is the map

T c(sP̄) � sP̄ s−1

−−→ P̄ ↪→ P,

and ι is the map

C � C̄ s−1

−−→ s−1C ↪→ T (s−1C).

Lemma 6.2.2 (acyclicity of the universal twisted composite products). For universal twisting morphisms π : BP →
P and ι : C → ΩC, twisted composition products BP ◦π P, P ◦π BP, C ◦ι ΩC, ΩC ◦ι C are acyclic.

Geometric intuition behind the scene is that these twisted composition products are analogs of the fibrations
ΩX → Path(X) ' ∗ → X and G→ EG ' ∗ → BG.

6.2.2 The second black box

The construction of the twisted composite product is functorial in the following sense:

Remark 6.2.3. Let α ∈ Tw(C,P) and α′ ∈ Tw(C′,P ′) be twisting morphisms. Let (f, g) be a morphism of twisting
morphisms, i.e. f : C → C′ and g : P → P ′ are morphisms of (co)operads and compatible twisting morphisms:
α′ ◦ f = g ◦ α. In this case, the composite products f ◦ g : C ◦α P → C′ ◦α′ P ′ and g ◦ f : P ◦α C → P ′ ◦α′ C′ are
morphisms of dg-Σ-modules.

We need extra grading for our key technical lemma.

Definition 6.2.4. We say a dg-operad P is weight-graded if it is a sum of sub-dg-Σ-modules P =
⊕

w≥0 P(w)

whose weight grading is preserved by the operad structure maps (i.e. the weight of γ(µ; ν1, . . . , νk) is the sum of
the weights of µ and ν’s, and the weight of id is zero). A weight-graded dg-operad is connected if P(0) = Kid, i.e.
it is augmented and P̄ =

⊕
w≥1 P(w). We similarly define (connected) weight-graded dg-cooperads.
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Examples of weight-graded (co)operads include (co)free (conilpotent) graded (co)operads with differentials (such
(co)operads are said to be quasi-free), and quadratic (co)operads which will be the main subject of Section 7.

Lemma 6.2.5 (comparison lemma). Let (f, g) be a morphism of weight-preserving twisting morphisms C α−→ P,

C′ α−→ P ′ between weight-graded connected dg-(co)operads. We have the following two-out-of-three properties:

1. If two of f , g, f ◦ g : C ◦α P → C′ ◦α P ′ are quasi-isomorphism, then so is the third.

2. If two of f , g, g ◦ f : P ◦α C → P ′ ◦α C′ are quasi-isomorphism, then so is the third.

The geometric intuition is the following: consider the morphism of fibrations

F
f //

��

F ′

��
E

e //

��

E′

��
B

b // B′

of simply connected spaces. Then if two of f, e, b induce homology isomorphisms, so is the third, proven either
by homotopy long exact sequence or by comparison of Serre spectral sequences. In the algebraic context, only the
latter option is available.

6.3 Fundamental theorem and bar-cobar resolution

Combining these two black boxes we obtain the fundamental theorem.

Theorem 6.3.1 (The fundamental theorem of twisting morphisms). Let P and C be connected weight-graded
dg-(co)operads and α : C → P be a weight-preserving twisting morphism. The following are equivalent:

1. C ◦α P is acyclic,

2. P ◦α C is acyclic,

3. fα : C → BP in Remark 6.2.1 is a quasi-isomorphism,

4. gα : ΩC → P is a quasi-isomorphism.

Proof. It suffices to prove (1)⇔(3), (1)⇔(4), (2)⇔(3), (1)⇔(4). Each of these follows immediately by comparing
with the universal case 6.2.2, using the comparison lemma 6.2.5.

Definition 6.3.2. We say that a twisting morphism α : C → P is Koszul when either C ◦α P or P ◦α C is acyclic.
We denote the set of Koszul morphisms by Kos(C,P).

The universal twisting morphisms are Koszul.

Theorem 6.3.3 (Bar-cobar resolution). For any augmented operad P, the counit ΩBP ∼−→ P is a quasi-isomorphism
of dg-operads. Dually, for any conilpotent cooperad C, the unit C ∼−→ BΩC is a quasi-isomorphism of dg-cooperads.

Proof. In the weight-graded case, this is an obvious corollary of the fundamental theorem, but this holds in general.
See [3] or the theorem below.

Warning. It is not generally true that Ω preserves the quasi-isomorphism. It is true if f : C → C′ is a quasi-
isomorphism between simply-connected cooperads, i.e. C̄n, C̄′n = 0 when n = 0, 1. This roughly corresponds to the
geometric situation, the homology-isomorphism on base and total space on fibration does not necessarily induce the
homology-isomorphism on the fiber when the base is not simply-connected.

A more general and stronger result is the following [2]:

Theorem 6.3.4. There exists a Quillen equivalence of presentable model categories

Ωu : {curved conilpotent cooperads} {(not necessarily reduced) dg-operads} : Bu

a

,where

10



1. The curved conilpotent cooperads are graded operad with “connection” and “curvature” instead of square-zero
derivation,

2. dg-operads can have nullary operations,

3. The category of dg-operads is endowed with the projective model structure, i.e. fibrations are arity-wise sur-
jection and weak equivalences are quasi-isomorphisms,

4. The category of curved conilpotent cooperads is endowed with right a model structure whose cofibrations and
weak equivalences are created by Ωu. In fact, the cofibrations are precisely the degreewise injections and weak
equivalence implies quasi-isomorphism.

In particular, all operads are fibrant and all cooperads are cofibrant, and therefore the counit gives a cofibrant
replacement of operads, and unit gives a fibrant replacement of cooperads.

7 Koszul duality of operads

For many graded operads we find in nature, a more refined theory of resolution is available.

7.1 Quadratic (co)operads

Definition 7.1.1. A quadratic data is a pair (E,R), where E ∈ grModΣop

and R ⊂ T(2)(E). A morphism of
quadratic data f : (E,R) → (E′, R′) is a morphism of graded Σ-modules f : E → E′ such that T f(R) ⊂ R′. We
associate a graded operad P(E,R) and a graded cooperad C(E,R) to a quadratic data as follows:

• P(E,R) is the operadic quotient of T (E) by the operadic ideal generated by R. In other words, it is the
universal one among operads with a map of operads T (E)→ P(E,R) such that the composite R ↪→ T (E)→
P(E,R) is zero.

• C(E,R) is the maximal subcooperad among those the composite C ↪→ T c(E) � T c(E)(2)/(R) is zero.

We call E the space of generating operations and R the space of relators. When an operad P is isomorphic to
P(E,R), we call (E,R) a quadratic presentation of P, and we call it a quadratic (co)operad.

Since these are defined as quotients or submodules of tree functor construction using homogenous relators, they
inherit the weight grading and are connected.

7.2 Koszul dual (co)operad of an operad

Definition 7.2.1. Let P = P(E,R) be a quadratic operad. We define the Koszul dual cooperad P ¡ by C(sE, s2R).
Dually, if C = C(E,R) be a quadratic cooperad, we define its Koszul dual operad C¡ by P(s−1E, s−2R).

C(sE, s2R) is isomorphic to C(E,R) as non-graded modules, and s is only shifting1 the degree of the generators.
This constrcution obviously gives an equivalence of appropriate categories

(-)¡ : {quadratic operads} {quadratic cooperdas with E0 = 0} : (-)¡ .

We can relate P ¡ and BP as follows:
Recall that the differential on the bar construction BP := T c(sP̄) was defined by d = d1 + d2, where d1 is

coming from the internal differential and d2 is coming from “contraction of an edge of trees.” Since the quadratic
operads are graded operads, d1 = 0 and therefore d = d2. Since the operad P itself is weight-graded, we define the
weight-grading on BP to be the sum of the weights of the generators, i.e. the number of generating operations of
E which constitute the cooperation in BP. Since the differential preserves the weight, BP is, as a dg-Σ-module,
a direct sum of homogenous weight part: BP =

⊕
k≥0(BP)(k). BP has yet another grading, called syzygy degree.

It is defined on P as (weight) − 1, and extended to BP additively (equivalently, consider each “bar” in the bar
construction have degree −1). This is a nonnegative cohomological grading (i.e. d has degree 1). This makes each
(BP)(k) into a cochain complex, and we can consider H0(BP).

Proposition 7.2.2. The natural inclusion P ¡ ↪→ BP of cooperads induce an isomorphism P ¡ ∼=−→ H0(BP).
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We define the natural twisting morphism κ : C(sE, s2R)→ P(E,R) by C(sE, s2R) � sE
s−1

−−→ E ↪→ P(E,R), or

equivalently the composite C(sE, s2R) ↪→ BP(E,R)
π−→ P(E,R). To check that it is actually a twisting morphism,

it is enough to see that κ ? κ = 0, and it is done by writing down the map explicitly.

Definition 7.2.3. A quadratic operad P is called Koszul when the twisting morphism κ : P ¡ → P is Koszul.

By the fundamental theorem, P is Koszul iff the corresponding morphism of dg-(co)operads ΩP ¡ → P (resp.
P ¡ → BP) is a quasi-isomorphism iff the twisted composite product P ◦κ P ¡ or P ¡ ◦κ P (these are called Koszul
complex ) is acyclic. It is also equivalent to saying that BP → H0(BP) is quasi-isomorphism.

Definition 7.2.4. When P is a Koszul operad, we denote P∞ := ΩP ¡ and the quasi-isomorphism P∞
∼−→ P is

called the Koszul resolution.

Koszul resolution is minimal in the following sense:

Definition 7.2.5. A minimal operad is a dg operad whose underlying graded operad is free T E with the following
condition:

1. the differential d is decomposable, i.e. it is the extension of some map E →
⊕

w≥2 T (w)E, and

2. E admits a decomposition E =
⊕

k≥1E
(k) satisfying d(E(k+1)) ⊂ T (

⊕k
i=1E

(i)).

It is known that, when P admits a minimal model (i.e. a minimal operad M with the resolution M→ P is),
it is unique up to (non-unique) isomorphism. There is also a notion of Koszul dual operad of an operad, defined
by P !(n) := ((Hom((sK)n, sK))∗ ⊗ P ¡(n))∗, where (-)∗ is the linear dual which turns cooperads into operads and
arity-wise finite dimensional operads into cooperads.

Proposition 7.2.6. 1. P ! is quadratic.

2. If the space of generators E is finite-dimensional in each arity, (P !)! ∼= P.

3. P is Koszul if and only if P ! is Koszul.

8 As and A∞

The nonsymmetric operad As is defined by As(n) = 1 for n ≥ 1 and As(0) = 0. Operad structure is given by the
identification As(n)⊗As(k1)⊗· · ·⊗As(kn) = As(k1 + · · ·+kn). In the case of topological or algebraic operads, the
point or generator in As(n) is denoted by µn. Algebras over As are nonunital associative algebras and free algebra
over V ∈M is given by T (V ) =

∐
n≥1 V

⊗n.

The operad As is quadratic and Koszul, with As! = As. The Koszul resolution As∞ is usually denoted by A∞
and called A-infinity operad. A∞(n) is isomorphic to the free module spanned by all the planar trees whose vertices
have arity ≥ 2 and with n leaves.

Let X be a topological space. Then it can be readily verified that the singular cohomology (with field coefficient)
A := H•Sing(X;K) is a homotopy retract of the dg-algebra of singular chains C•Sing(X;K). By the homotopy transfer

theorem, A admits an A∞ structure. The product A⊗3 → A given by the corolla with three leaves corresponds to
the Massey product, which detects, for example, the nontriviality of the complement of the Borromean rings (this
cannot be detected by binary product, i.e. the cohomology ring structure).
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