((very) slowly) towards)

Derived Absolute Algebraic Geometry (Spectral)

(2) Absolute AG function fields number fields F.[+] I deep analogy between \mathbb{Q} $\mathbb{F}(t)$ number fields Specf [[] = A1 Spec Z 8 function fields Spec Z = Spec Z u (00) absolute value/~ = place = closed point $\left(f_{\mathcal{L}}(t) \right)_{\mathcal{V}} = \left\{ \begin{array}{c} \left\{ \mathbb{F}_{\mathcal{L}}\left(\left(t - \mathbf{x} \right) \right) \left(\begin{array}{c} \mathbf{v} \in \mathbb{A}^{1} \\ \mathbf{c} \rightarrow \mathbf{f}(t) \text{ irred} \end{array} \right) \\ \left\{ \mathbb{F}_{\mathcal{P}}\left(\left(\frac{1}{t} \right) \right) \left(\mathbf{v} = \infty \right) \end{array} \right\}$ $\mathbb{Q}_{v} = \left\{ \begin{array}{ll} \mathbb{Q}_{p} & \forall = p \in \text{Spec}\mathbb{Z} \\ \mathbb{R} & \forall = \infty \end{array} \right.$ $f_{a}[t-x]$ product formula TI (x1v = 1 for X E Q or Fo(t) $\mathcal{G}^{\mathsf{b}} = \frac{\mathsf{b}}{(-)_{\mathsf{b}} - (-)}$ %t Hasse-Weil J Riemann G K/ Fp(+) fin (sep) ext Similarly for K/a finext (function field) (number field)

•

cf Mod_Z
$$\longrightarrow$$
 Mod_S
If a spectrum X is an HZ-module, lots of
"power operations" acts on honology groups of X.

E2. Hopf-Galois descent data with Galois object Σ°Ω²(S³<3>)+ (Beardsley-Morana)

Obstacle · For Exo-monoids,
$$\Sigma \circ \Sigma'$$
 is the group completion
· $\Sigma : \mathcal{C} \to \mathcal{C}$ being fully faithful functor
already finces \mathcal{C} : additive
Slogan: Only groups are deloopable in $(\infty, 1) - Categories$
 $\begin{pmatrix} "(n, k) - Category" = Category with 0, 1, ..., n morphisms
all morphisms of dim >k is invertible
Baez-Dolan delooping hypothesis
· E. monoid = Category with 3! object
space B BM = QM
M B BM = QM
· En-monoid space = monoidal ($\infty, 1$)-cat with 3! obj = ($\infty, 2$) cat with 3! 0, 1-mon$

$$(E_{1}-) (\infty,1)- \sum_{k=1}^{n} (\infty,2)- Category with \exists ! object$$
• monoidal Category = (00,2)- Category with \exists ! object
• braided monoidal Category = monoidal ($\infty,2$)- Cat with \exists ! object
($E_{2}-1$) = ($\infty,3$) - Cat with $\exists ! obj, s, 1-mor$
generalize \exists
 E_{k} -monoidal (∞, n) - Cates E_{k-1} -monoidal ($\infty, n+1$)-cat with $\exists ! obj$
 $ars E_{k-2}$ -monoidal ($\infty, n+2$)- Cat with $\exists ! 0 s 1-mor$
 $intermode = intermode = intermode$

$$T_{n} (\infty, \infty) - Cat, Commutative monoids are infinitely deloopable
: Categorified version of connective spectra
"CMon((∞, ∞)Cat) = ∞ Sp^{Cn}"
Stabilization
 ∞ Sp = ($im(--- \xrightarrow{\rightarrow} 00, \infty$)Cat, $\xrightarrow{\rightarrow} (00, \infty)$ Cat,)
 ∞ Sp^{cn} = CMon(($00, \infty$)Cat)
(cf. Sp = $lim(--- (\infty D)Cat, \xrightarrow{\rightarrow} (\infty D)Cat,)$
 $\int_{Sp^{Cn}}^{Cn} = CMon((\infty, 0)Cat,)$
 $\int_{Sp^{cn}}^{Cn} = CMon((\infty, 0)Cat,)$
 $\int_{Sp^{cn}}^{Cn} = CMon((\infty, 0)Cat,)$
 $\int_{Sp^{cn}}^{U} = CMon((\infty, 0)Cat,)$$$

Let
$$G \xrightarrow{F}$$
 Space be the left Kan extensions
 $J \xrightarrow{P(G)} \lim_{\log F} \lim_{F \to Space} then SF is confittened$
then TFAE: (1) Let $SF \rightarrow Space_*$, then SF is confittened
(2) F is a filtered colimit of correpresentable
(3) $\lim_{F \to S} F : P(G) \rightarrow Space$ is left exact
(4) $\lim_{F \to F} F : P(G) \rightarrow Space$ is left exact
(4) $\lim_{F \to F} F : P(G) \rightarrow Space$ is left exact
(5) $\lim_{F \to F} F : P(G) \rightarrow Space$ is left exact
(6) $\lim_{F \to F} Space \rightarrow Space$ is left exact
(7) $\lim_{F \to F} Space \rightarrow Space$ is left exact
(8) $\lim_{F \to F} Space \rightarrow Space$ is left exact
(9) $\lim_{F \to F} Space \rightarrow Space$ is $M \in RMod_R$
 $F : G \rightarrow CMon \xrightarrow{F} Space \rightarrow M \in RMod_R$

-) It seems safe to define flatness as these equivalent conditions. · This can be used to define e.g. A to B in CRig(Spaces) is weatly étale if fis flat and △f: B→ B@B is flat · Used in pro-étale site paper by Bhatt-Scholze · for ring spectra, with a mild finiteness condition, this implies Stale.